大学物理 ›› 2018, Vol. 37 ›› Issue (8): 1-3.doi: 10.16854 /j.cnki.1000-0712.170649

• 教学研究 •    下一篇

三类互不等价的压缩算符

林琼桂   

  1. 中山大学物理学院,广东广州510275
  • 收稿日期:2017-11-27 修回日期:2018-03-05 出版日期:2018-08-20 发布日期:2018-08-20
  • 作者简介:林琼桂(1963—),男,广东潮阳人,中山大学物理学院教授,博士生导师,从事理论物理学的教学和相关研
  • 基金资助:
    国家自然科学基金项目(11175268)资助

Three classes of inequivalent squeeze operators

LIN Qiong-gui   

  1. School of Physics,Sun Yat-Sen University,Guangzhou,Guangdong 510275,China
  • Received:2017-11-27 Revised:2018-03-05 Online:2018-08-20 Published:2018-08-20

摘要: 构造了三类压缩算符,将其中任何一类作用于相干态,均可得到具有任意压缩度的理想压缩态.熟知的压缩算符是 其中一类的特殊情况.三类算符互不等价,即不能通过线性正则变换互相转化.

关键词: 压缩算符, 压缩态, 相干态

Abstract: The squeeze operators of three classes are presented. The ideal squeezed states with arbitrary degree of squeezing can be obtained by acting any one of them on coherent states. The familiar squeezed operator is a special case of the three classes. The three classes are not equivalent to one another,namely,they cannot be transformed into one another by linear canonical transformations

Key words: squeeze operator, squeezed state, coherent state