大学物理 ›› 2017, Vol. 36 ›› Issue (5): 24-26.doi: 10.16854 /j.cnki.1000-0712.2017.05.007

• 编者按 • 上一篇    下一篇

用阶梯算符研究谐振子能量及相干态问题

郁华玲   

  1. 淮阴师范学院物理与电子电气工程学院,江苏淮安223300
  • 收稿日期:2016-09-01 修回日期:2016-10-09 出版日期:2017-05-20 发布日期:2017-05-20
  • 作者简介:郁华玲( 1975—) ,女,江苏淮安市人,淮阴师范学院物理与电子电气工程学院副教授,博士,主要从事
  • 基金资助:
    江苏省自然科学基金( BK20140450) 、淮安市科技计划项目( HAG2014043) 资助

The studies of energies and coherent state for harmonic oscillator by ladder operators

YU Hua-ling   

  1. School of Physics and Electronic Electrical Engineering,Huaiyin Normal University,Huaian, Jiangsu 223300,China
  • Received:2016-09-01 Revised:2016-10-09 Online:2017-05-20 Published:2017-05-20

摘要: 谐振子是量子力学中最基本也是十分典型和重要的问题,而在坐标表象中利用薛定谔方程的求解过程比较复杂.本文从两个无量纲的阶梯算符出发巧妙的推导出谐振子能量的本征值和本征矢,进而借用平移算符求解出谐振子的相干态.计算表明相干态表象的基矢是过完备的,同时在相干态中,坐标及其动量具有最小的不确定性.

关键词: 谐振子, 相干态, 阶梯算符, 平移算符

Abstract: Harmonic oscillator is not only the most basic but also a representative problem in the quantum mechanics. The discussion on it in the coordinate representation by the Schrdinger equation is very complicated.The dimensionless ladder operators are introduced to calculate the eigenvalues and eigenvectors of Hamiltonian dexterously. The coherent states of harmonic oscillator is investigated by translation operators. It is found that the basic-vectors in the representation of coherent states are over-complete and there is the minimum uncertainty of position and its momentum in the coherent states.

Key words: harmonic oscillator, coherent states, ladder operator, translation operator