大学物理 ›› 2016, Vol. 35 ›› Issue (3): 8-8.
• 著者文摘 • 上一篇 下一篇
罗凌霄
出版日期:
发布日期:
Online:
Published:
摘要: 通过基本的途径,没有利用斯托克斯公式,导出矢量场环量面密度的计算公式.指出同一点处矢量场f(r,t)绕不同轴的环量面密度不同,Δ×f的大小等于环量面密度的最大值,Δ×f的方向沿着环量面密度取最大值时回路所缠绕的轴的方向,绕n轴的环量面密度等于Δ×f沿n轴的分量.这样的一个矢量场Δ×f叫做f(r,t)的旋度.并且指出计算矢量场沿无穷短线段的线积分时人们常犯的错误.
关键词: 矢量场, 环量面密度, 旋度
Abstract: Through the basic way and no use of Stokes' formula,the calculation formula of the surface density of circulation of the vector field is derived. It is pointed out that at the same point the surface density of circulation of the vector field f( r,t) surrounding the different axis is different,the size ofΔ× f is equal to the maximum of the surface density of circulation,the direction of theΔ× f is along thus a axis when the loop winds this axis,the surface density of circulation maximize,the surface density of circulation that winding the axis n is equal to the weight of theΔ× f along axis n. Thus a vector fieldΔ× f is called the curl of f( r,t). A mistake is pointed out,that ones often make when they calculate the line integral which vector field is along a infinite short line segment.
Key words: vector field, the surface density of circulation, curl
中图分类号:
罗凌霄. 旋度概念的从头构建法[J]. 大学物理, 2016, 35(3): 8-8.
0 / / 推荐
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文: https://dxwl.bnu.edu.cn/CN/
https://dxwl.bnu.edu.cn/CN/Y2016/V35/I3/8
Cited