大学物理 ›› 2006, Vol. 25 ›› Issue (2): 30-30.

• 著者文摘 • 上一篇    下一篇

相位不变性的若干讨论

蒋永进 周晓艳   

  1. 浙江师范大学数理与信息科学学院,浙江金华321004
  • 出版日期:2006-02-25 发布日期:2006-02-20

Some discussions on phase invariance

  • Online:2006-02-25 Published:2006-02-20

摘要: 考察了经典波动理论中的相位不变性,并且提出它作为物理学基本原理的直观依据——物理量的序列不变性.序列不变性是相对论原理的一个反映.从相位不变性出发,在给定时空变换关系下(伽利略变换和洛伦兹变换),得到波矢、频率和描述波包(类似于经典粒子)运动的群速度的坐标变换公式.另外,讨论了薛定谔方程、克莱因-戈尔登方程的相位坐标变换问题.对于薛定谔方程,我们认为量子力学中的复概率幅解放了经典波动情形下(波函数的实部具有独立物理意义)必须满足的相位不变性的约束,从而扩展了物理学的疆域,使它成为非相对论量子力学的基础;对于克莱因一戈尔登方程,它的解满足相位不变性,虽然对复波函数一般很难定义物理量序列的概念,但是对于克莱因-戈尔登方程,我们认为它也隐藏了某种序列不变性,并且结合倪光炯教授的双组分(正反粒子成分)观念给出了定义这种序列的一种可能性.

关键词: 相位不变性, 经典波, 量子波, 序列不变性, 薛定谔方程, 克莱因戈尔登方程

Abstract: The principle of phase invariance (also called "phase harmonic law") in classical wave dynamics as a basic physical principle is discussed and an underlying intuitive reason which lies behind it the order invariance of physical quantities is proposed. Such invariance reflects the principle of relativity. From "phase harmonic law" we deduced the transformation laws for wave vector, frequency, and group velocity of wave packets while space- time coordinates satisfying Galileo and Lorentz transformation, respectively. Furthermore we discussed the problem of phase transformation for Schroedinger equation and Klein Gordon equation. For Schroedinger equation, we believe that the complex nature of wave function releases the wave function from phase invariance which is inevitable for classical waves (where only the real part of wave function have physical meaning), thus expanded the physical region. It becomes the basic quantum equation of nonrelativistic particles. Klein - Gordon equation, however, satisfies "phase harmonic law", we believe that there should be some kind of order invariance for physical quantities behind it. We discussed one possibility from professor Guangjiong Ni's two-component (particle and antiparticle) notion to identify such an order.

Key words: phase harmonic law, classical wave, quantum wave, order invariance, Schroedinger equation, Klein- Gordon equation

中图分类号: 

  • O413.1