大学物理 ›› 2015, Vol. 34 ›› Issue (2): 41-41.

• 著者文摘 • 上一篇    下一篇

一维圆环上双原子链的马德隆常数

徐宝[1] 吴鸿业[1] 赵建军[1] 鲁毅[2]   

  1. [1]内蒙古磁学与磁性材料重点实验室 [2]包头师范学院物理科学与技术学院,内蒙古包头014030
  • 出版日期:2015-02-25 发布日期:2015-02-20

Madelung constant of double atomic chain on circles

  • Online:2015-02-25 Published:2015-02-20

摘要: 考虑在半径为R的圆环上离子系统的马德隆常数.对无限个原胞的极限情形,用数值方法证明圆环上的马德隆常数跟一维无限长直线链上的马德隆常数一致,直观地验证了取周期性边界条件的物理依据.最后从该结果出发得出二个有用的恒等式。

关键词: 马德隆常数, 圆环, 周期性边界条件, 恒等关系

Abstract: The Madelung constant of the double atomic system on a circle with radius R is calculated. It has been proved numerically that the Madelung constant for the circle case is identical to that for the linear chain case under the condition of infinite number of primitive cells,which demonstrates intuitively the physical base of periodic boundary conditions. Based on such results,two identical relations are obtained.

Key words: Madelung constant, circle, periodic boundary condition, identical relations

中图分类号: 

  • O481