大学物理 ›› 2014, Vol. 33 ›› Issue (9): 27-27.

• 著者文摘 • 上一篇    下一篇

统计物理方法在离散变量模型中的应用及推广

李鹤龄 杨斌   

  1. 宁夏大学物理电气信息学院,宁夏银川750021
  • 出版日期:2014-09-25 发布日期:2014-09-20

Applications and extension of statistical physics approach in a model with discrete variables

  • Online:2014-09-25 Published:2014-09-20

摘要: 提出离散变量模型,并基于此模型由最大熵原理出发,展现了统计物理方法在热力学系统中的具体应用.该方法可以推广应用至由大量"个体"所构成的"总体"非物理系统中,如金融系统,社会生产系统等.文中还指出由最大熵原理得到的概率分布函数同时适用于平衡态和非平衡定态的热力学系统.

关键词: 群体, 最大熵原理, Shannon熵, 非平衡定态

Abstract: A type of model with discrete variables is proposed. Based on the model and the maximum entropy principle, applications of statistical physics method are discussed in thermodynamical systems. The model is able to be extended to other non-physical systems composed of lots of elements, such as financial system and social production system. The probability distribution function obtained from the maximum entropy principle can be applied to equilibrium and non-equilibrium stationary system with the same boundary.

Key words: group, maximum entropy principle, Shannon entropy, non-equilibrium stationary state

中图分类号: 

  • O414