大学物理 ›› 2013, Vol. 32 ›› Issue (4): 5-5.
• 著者文摘 • 上一篇 下一篇
辛国君[1] 刘树新[2] 舒幼生[2]
出版日期:
发布日期:
Online:
Published:
摘要: 利用守恒量求解傅科摆小摆角相对运动方程,解析解是内次摆线.确定了轨迹的曲率半径和周期轨迹的形成条件.证明了摆球速度矢量是以匀角速度-ωsinλ旋转的.
关键词: 傅科摆, 摆平面进动, 曲率半径, 内次摆线
Abstract: The relative motion equation of Foucault pendulum is solved by using the conservation law and its exact solution is a hypotrochoid in the polar coordinate. Both curvature radius and periodic formation of trajectory are determined by means of the geometric property of hypotrochoid. It is proved that the rotation speed of vector of velocity is always equal to -ωsin λ.
Key words: Foucauh pendulum, rotation of oscillation plane, curvature radius, hypotrochoid
中图分类号:
辛国君[] 刘树新[] 舒幼生[]. 傅科摆的进动与轨迹的周期性[J]. 大学物理, 2013, 32(4): 5-5.
0 / / 推荐
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文: https://dxwl.bnu.edu.cn/CN/
https://dxwl.bnu.edu.cn/CN/Y2013/V32/I4/5
Cited