大学物理 ›› 2013, Vol. 32 ›› Issue (3): 53-53.

• 著者文摘 • 上一篇    下一篇

一种实现边界条件与方程均齐次化的方法

姚端正   

  1. 武汉大学物理科学与技术学院,湖北武汉430072
  • 出版日期:2013-03-20 发布日期:2013-03-20

A method of simultaneously homogenizing boundary conditions and differential equation

  • Online:2013-03-20 Published:2013-03-20

摘要: 给出了一种在用分离变量法求解具有非齐次边界条件的定解问题时,能将边界条件与方程均实现齐次化的待定函数法,并就物理学中的三类典型数理方程分别具有第一、第二、第三类非齐次边界条件的定解问题进行了讨论,给出了具体的结论和求解模式.

关键词: 分离变量法, 非齐次边界条件, 波动方程, 输运方程, 拉普拉斯方程, 三类边界条件, 二阶线性常微分方程

Abstract: One of the un-determined functions methods for solving the deterministic problems with non-homogeneous boundary conditions by using the method of variable separation has been presented, which can homogenize boundary conditions and differential equation simultaneously. Also the deterministic problems of three typical kinds of mathematical physical equations with the first, the second or the third type of the non-homogeneous boundary conditions are discussed, respectively. The specific conclusions and the solving model are presented.

Key words: method of separation of variables, non-homogeneous boundary conditions, wave equation, transport equation, Laplace equation, three kinds of boundary conditions, second-order linear ordinary differential equation

中图分类号: 

  • O411