大学物理 ›› 2014, Vol. 33 ›› Issue (9): 11-11.

• 著者文摘 • 上一篇    下一篇

基于迭代法对分形物体转动惯量的研究

鲍四元 汤亚娟   

  1. 苏州科技学院土木工程学院,江苏苏州215011
  • 出版日期:2014-09-25 发布日期:2014-09-20

Research on the rotational interia of fractal body based on the iteration method

  • Online:2014-09-25 Published:2014-09-20

摘要: 研究具有分形形态的物体绕定轴的转动惯量,以科赫雪花曲线所围图形为例,给出其绕过形心的某固定轴转动惯量的迭代算法和公式.所得结果与已有文献的精确结果完全一致.所提方法步骤明确,便于编程,且适合于一些推广的分形图形.

关键词: 分形, 迭代, 转动惯量

Abstract: The rotational interia about a fixed axis for body with fractal form is discussed. The figure enclosed by the Koch snowflake curve is used as an example, the iteration alogrithm and the formula are given for the figure's rotational interia about a horizontal fixed axis through the centroid. The obtained result is in agreement with the accurate result. The presented method has normalized steps, and it is convinent for programming. The proposed method can also be applied to the extension of other fractal figures.

Key words: fractal, iteration, rotational interia

中图分类号: 

  • O303.3