大学物理 ›› 2018, Vol. 37 ›› Issue (9): 56-59.doi: 10.16854 /j.cnki.1000-0712.170562

• 大学生园地 • 上一篇    下一篇

数学物理方程求解中的创新思维探源

王畅,王翘楚,刘伟,史庆藩   

  1. 北京理工大学,北京100081
  • 收稿日期:2017-10-14 修回日期:2018-04-10 出版日期:2018-09-20 发布日期:2018-09-20
  • 作者简介:王畅( 1996—) ,女,吉林长春人,北京理工大学物理学院2015 级本科生.
  • 基金资助:
    教育部高等学校物理学类专业教指委数学物理方法课程教学研究项目( JZW-14-SL-05) 资助

Exploration of the innovative thinking in solving mathematical physics equations

WANG Chang,WANG Qiao-chu,LIU Wei,SHI Qing-fan   

  1. Center of Physics Experiments,Beijing Institute of Technology,Beijing 100081,China
  • Received:2017-10-14 Revised:2018-04-10 Online:2018-09-20 Published:2018-09-20

摘要: 数学物理方程是描述空间连续分布的各种物理场的状态和物理过程的方程.由于数学物理方程是含有多个变量的 偏微分方程,计算比较困难,因此在求解的历程中涌现出了许多创新思想.本文在研究史实的基础上,探讨了在面对困难时,前 人创立分离变量法、无穷级数法和斯-刘理论等方法的思维方式.了解前人解决问题的过程不仅对数学物理方法的学习具有很 大的启迪作用,而且有助于培养学生的创新意识.

关键词: 创新思维, 偏微分方程, 数学史

Abstract: The mathematical physics equation is used to describe the states of various physical fields in the continuous distributed space and physical processes. Because mathematical physics equations are the partial differential equations which contain multiple variables. They are different to solve,then many innovative ideas are emerged in the history of the solution. This paper discusses the ways of thinking when methods such as separation of variables,infinite series and Sturm-Liouville theory were established based on the historical facts. Learning about the formation process of these innovative ideas can enlighten the study of mathematical physics equations.

Key words: innovative thinking, partial differential equation, history of mathematics