大学物理 ›› 2019, Vol. 38 ›› Issue (3): 1-3.doi: 10.16854 /j.cnki.1000-0712.180498

• 教学研究 •    下一篇

基于Wigner函数的一些量子熵的定义

林冰生,衡太骅   

  1. 1.华南理工大学数学学院,广东广州510641; 2.安徽大学物理与材料科学学院,安徽合肥230601
  • 收稿日期:2018-09-07 修回日期:2018-11-09 出版日期:2019-03-20 发布日期:2019-04-25
  • 通讯作者: 衡太骅,E-mail: hength@ ahu.edu.cn
  • 作者简介:林冰生( 1982—) ,男,广东揭阳人,华南理工大学数学学院讲师,博士,研究方向为数学物理.
  • 基金资助:
     国家自然科学基金( 11405060,11571119) 资助

Some definitions of quantum entropy based on Wigner function

LIN Bing-sheng1,HENG Tai-hua2   

  1. 1.School of Mathematics,South China University of Technology,Guangzhou,Guangdong 510641,China; 2.School of Physics and Material Science,Anhui University,Hefei,Anhui 230601,China
  • Received:2018-09-07 Revised:2018-11-09 Online:2019-03-20 Published:2019-04-25

摘要: 本文分别介绍了冯诺依曼熵、线性熵、Rényi 熵和Tsallis 熵等几种量子熵,以及它们在相空间中基于Wigner 函数的

几种不同的定义. 通过理论推导和具体的数值计算,证明了文献中利用Wigner 函数的绝对值来定义相空间量子熵是不合适

的,而本文给出的利用Wigner 函数的Moyal 星乘积定义的量子熵与通常利用密度矩阵定义的量子熵结果是相一致的.

关键词: Wigner 函数, 冯诺依曼熵, Tsallis 熵, Rényi 熵, 线性熵

Abstract: Some quantum entropy,such as von Neumann entropy,linear entropy,Rényi entropy,Tsallis entropy,

and several different definitions of them based on Wigner functions in phase space,are introduced respectively.

Through some theoretical deductions and numerical calculations,the definitions of quantum entropy in phase

space using the absolute value of Wigner function in the literatures are proved to be inappropriate. The quantum entropy

defined in this paper by the Moyal star product of Wigner function is consistent with that defined by density

  matrices.

Key words: Wigner function, von Neumann entropy, Tsallis entropy, Rényi entropy, linear entropy