大学物理 ›› 2019, Vol. 38 ›› Issue (12): 15-.doi: 10.16854 /j.cnki.1000-0712.190075

• 教学研究 • 上一篇    下一篇

浅谈利用薛定谔方程计算量子态的时间演化

宋杰,王晓鸥,霍雷,张宇,赵远   

  1. 哈尔滨工业大学物理学院,哈尔滨黑龙江150001
  • 收稿日期:2019-02-05 修回日期:2019-05-29 出版日期:2019-12-20 发布日期:2020-01-22
  • 通讯作者: 赵远,E-mail: yuanzhao@ hit.edu.cn
  • 作者简介:宋杰( 1979—) ,男,黑龙江哈尔滨人,哈尔滨工业大学物理系教授,博士,主要从事大学物理教学和和量子光学领域的科学研究.
  • 基金资助:

    新时代新工科大学物理教学体系项目资助; 基础学科拔尖学生培养试验计划支持( 20180216) ; 国家自然科学基金( 11675046) 资助; 黑龙江省博士后科研启动经费( LBH-Q15060) 资助

A brief probe: time evolution of quantum state based on Schodinger equation

SONG Jie,WANG Xiao-ou,HUO Lei,ZHANG Yu,ZHAO Yuan   

  1. Department of Physics,Harbin Institute of Technology,Harbin,Heilongjiang 150001,China
  • Received:2019-02-05 Revised:2019-05-29 Online:2019-12-20 Published:2020-01-22

摘要:

量子力学教学中,薛定谔方程是描述一个量子系统变化的核心部分.学生对薛定谔方程的学习,可以理解量子物理和经典物理的不同之处,在量子物理教学中,薛定谔方程的讲解是一个非常重要的内容.然而在教学中学生对于薛定谔方程的理解,通常局限在定态薛定谔方程,而对于量子态随着时间的变化部分并不清楚,因此我们引入耦合腔模型: 一个单光子在一个耦合的腔系统中,求光子在不同腔中出现概率随着时间变化关系.在教学中利用最简单的哈密顿量描述光子在耦合腔中的跳跃过程,给出几率随着时间变化的解析表达式,从而更加直观的理解微观粒子在一个量子系统中的规律.

关键词: 量子系统, 单光子, 耦合腔

Abstract:

In the teaching of quantum mechanics,Schrodinger equation is the core part of describing the evolution of a quantum system. Research on Schrodinger equation enables students to understand the differences between quantum physics and classical physics. In the course of quantum physics,Schrodinger equation is very important for students to have a grasp of the properties of quantum state. However,in teaching,most examples focus on the stationary Schrodinger equation. The students cannot master the time evolution of quantum state very well. Thus we introduce the simplest system which is composed of a single photon and coupled cavity system. The probability of photon in different cavities varies with time. Simultaneously,the simplest Hamiltonian is used to describe the hopping process of photons in the system.The analytical expression of the probability depending on time is given.As a result, the time evolution of quantum state can be understood more intuitively.

Key words: quantum systems, single photon, coupled cavities