大学物理 ›› 2021, Vol. 40 ›› Issue (3): 79-.doi: 10.16854 / j.cnki.1000-0712.200219

• 大学生园地 • 上一篇    下一篇

用松弛法解薛定谔方程

刘观福,余 聪   

  1. 中山大学 物理与天文学院,广东 珠海 519082
  • 收稿日期:2020-06-01 修回日期:2020-08-06 出版日期:2021-03-20 发布日期:2021-03-23
  • 通讯作者: 余聪,E-mail: yucong@ mail.sysu.edu.cn
  • 作者简介:刘观福( 1999—) ,男,江西赣州人,中山大学物理与天文学院物理学专业 2018 级本科生.
  • 基金资助:
    国家自然科学基金( 11873103) 资助

Solving the Schrodinger equation with the relaxation method

LIU Guan-fu,YU Cong   

  1. School of Physics and Astronomy,Sun Yat-Sen University,Zhuhai Guangdong 519082,China
  • Received:2020-06-01 Revised:2020-08-06 Online:2021-03-20 Published:2021-03-23

摘要: 求解定态薛定谔方程常常会涉及到常微分方程的本征值问题.目前解常微分方程本征值用的比较多的方法是以龙格-库塔方法为基础的打靶方法.打靶方法常用,但是计算时间长.当边界条件比较复杂或比较敏感的时候,用松弛法会有更好的效果.本文用松弛法解薛定谔方程,并和理论解进行比较.发现松弛法得到的数值解和理论解符合度很高,而且使用松弛法能够很快得到符合要求的解.

关键词: 松弛法, 薛定谔方程, 数值分析

Abstract: The most common method to solve ordinary differential equations is the shooting

method based on Runge Kutta method. The shooting method is commonly used,but the calculation

time is long. When the boundary conditions are more complex or more sensitive,the relaxation

method is better.In this paper,the Schrodinger equa- tion is solved by the relaxation method and

compared with the analytical solution. It is found that the numerical so- lution obtained by

relaxation method is in good agreement with the analytical solution,and the accurate solution can

be obtained quickly by relaxation method.

Key words: relaxation method, Schrodinger equation, numerical analysis