大学物理 ›› 2022, Vol. 41 ›› Issue (3): 78-.doi: 10.16854/j.cnki.1000-0712.210226

• 大学生园地 • 上一篇    下一篇

双凹球面相控聚焦超声波场的产生与可视化

孔令昊,李嘉琪,曾天佑,曾育锋   

  1. 1. 华南师范大学 物理与电信工程学院,广东 广州510006;2. 华南师范大学 物理国家级实验教学示范中心,广东 广州510006
  • 收稿日期:2021-05-08 修回日期:2021-07-02 出版日期:2022-03-30 发布日期:2022-03-31
  • 通讯作者: 曾育锋,E-mail: zengyufengwl@163.com
  • 作者简介:孔令昊(2000—),男,广东省佛山人,华南师范大学物理与电信工程学院物理学(师范)专业2018级本科生.

Generation and visualization of phased focused ultrasonic  field based on double concave spherical

KONG Ling-hao, LI Jia-qi, ZENG Tian-you, ZENG Yu-feng,    

  1. 1. School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, Guangdong 510006, China;
    2. National Demonstration Center for Experimental Physics Education, South China Normal University, Guangzhou, Guangdong 510006, China
  • Received:2021-05-08 Revised:2021-07-02 Online:2022-03-30 Published:2022-03-31

摘要: 超声相控阵技术在声悬浮中有十分重要的价值,相较于传统的一维单轴声悬浮装置,本文在凹球面双发射极超声阵列的基础上引入相控聚焦原理,产生了声悬浮能力较强的声场,重点研究了声场的仿真模拟与可视化验证. 首先,介绍了自发设计的凹球面双发射极超声阵列结构,阐述了相控聚焦原理、超声驻波悬浮机理、声压与声辐射力等声学理论. 然后,根据理论分析结果,借助COMSOL Multiphysics多物理场仿真软件,仿真模拟相控聚焦超声波场. 产生该声场的各超声波换能器相位可单独控制,通过相位的实时变化,可使声场进行动态聚焦,实现微粒的悬浮与任意轨迹移动. 最后,使用单反射纹影系统实现了该声场的实时可视化,与仿真结果进行比较,证实了凹球面双发射极超声波装置相控聚原理的准确性.

关键词: 凹球面双发射极超声波装置, 相控聚焦, COMSOL仿真, 纹影法

Abstract: Ultrasonic phased array technology has a very significant value in acoustic levitation. Compared with traditional onedimensional single axis acoustic levitation device,a phased focusing principle based on concave spherical with double emitter ultrasonic array is introduced, and a sound field with strong acoustic levitation ability is producd. What is more, the simulation and visual verification of the sound field are also mainly researched. First, its structure is introduced, and the acoustic theories such as phased focusing principle, ultrasonic standing wave suspension mechanism, sound pressure and acoustic radiation force are expounded. Afterward, according to the results of theoretical analysis, with the help of COMSOL multiphysics multi physical field simulation software, the phased focused ultrasonic field is simulated. The phase of each ultrasonic transducer which produces sound field can be controlled independently. Through the actualtime modification of phase, the sound field can be dynamically focused to realize the suspension and arbitrary trajectory movement of particles. Finally, the single reflector schlieren system is used to achieve the realtime visualization of sound field. Compared with the simulation results, the accuracy of the phase controlled focusing principle of the concave spherical double emitter ultrasonic device is verified.

Key words: concave spherical double emitter ultrasonic device, principle of phase controlled focusing, COMSOL simulation, schlieren method