大学物理 ›› 2022, Vol. 41 ›› Issue (4): 2-.doi: 10.16854/j.cnki.1000-0712.210346

• 教学研究 • 上一篇    下一篇

晶体结构教学中两个易困惑处的研究与探讨

杨军   

  1. 1. 中国科学院过程工程研究所,北京100190;2. 中国科学院大学 材料与光电技术学院,北京100049
  • 收稿日期:2021-07-22 修回日期:2021-10-08 出版日期:2022-04-20 发布日期:2022-04-19
  • 作者简介:杨军(1972—),男,河北邯郸人,中国科学院过程工程研究所研究员,中国科学院大学材料与光电技术学院岗位教授,博士,主要从事“材料科学基础”课程教学和能源转化研究工作.
  • 基金资助:
    北京市教委项目“双一流”建设背景下材料专业本科生创新型人才培养模式的探索与实践资助

Study and discussion on two confusing points in teaching of crystal structure

YANG Jun   

  1. 1. Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; 
    2.School of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2021-07-22 Revised:2021-10-08 Online:2022-04-20 Published:2022-04-19

摘要: 本文针对晶体结构教学过程中易于混淆和当前教材中模糊不清的知识点予以澄清和阐释,明确指出通过点阵变换来说明某个点阵不是新布拉菲点阵时,需要在同一晶系内进行,对称性不能改变,变换后成为另一晶系的点阵则不能否定该点阵的存在. 本文还给出了四轴指数标记晶面时附加条件的三种证明方法,简单直观,可以加深学生对这些知识点的理解,适合在教学实践中采用.

关键词: 晶体结构, 点阵变换, 四轴指数

Abstract: Two confusing points in teaching of crystal and on many current textbooks are concerned. Lattice transformation is used to infer whether the formation being a new Bravais lattices or not and additional constraint is added to four indices. The lattice transformation must be carried out in same crystal system, and the transformation into another crystal system could not deny the original lattice. Three methods are provided to prove that the additional constraint in four indices has a rigorous mathematical foundation. This is favorable for students to understand the related contents in crystal structures.

Key words: crystal structure, lattice transformation, four indices