大学物理 ›› 2023, Vol. 42 ›› Issue (3): 61-.doi: 10.16854/j.cnki.1000-0712.220327

• 大学生园地 • 上一篇    

探究复变函数的连续幂次展开式

刘懿文,吴小山   

  1. 南京大学 物理学院,江苏 南京210093
  • 收稿日期:2022-07-03 修回日期:2022-08-18 出版日期:2023-05-04 发布日期:2023-05-06
  • 通讯作者: 吴小山,E-mail: xswu@nju.edu.cn
  • 作者简介:刘懿文(2001—),男,江苏南京人,南京大学物理学院2019级本科生.
  • 基金资助:
    教育部第二批新工科研究与实践项目(NE-LNYJ20200106)资助

Search for continuous-power expansions for complex functions

 LIU Yi-wen,WU Xiao-shan   

  1. School of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
  • Received:2022-07-03 Revised:2022-08-18 Online:2023-05-04 Published:2023-05-06

摘要: 本文发展了使用幂次式展开收敛域中含有支点的复变函数的方法.在无穷阶支点下,函数的展开式化为积分的形式,称之为洛朗变换.文章还探讨了部分典型函数的展开结果及其完备性问题,并提出了使用连续复幂次代替实幂的方法.最后,举出一例简释了该方法在信号系统中的实际应用,展望了应用前景.

关键词: 复变函数, 洛朗变换, 基底, 信号系统

Abstract: This paper develops a method of expansions for complex functions in the neighborhood of its branchpoint. Its expansion turns into the form of integral when it comes to infinite-order branch points, which is named after Laurent transform. Attempt is employed to try to get the expansion of several sample functions, with judging the completeness for the expansions. Plus, to use the form of complex-power expansions instead of real-power ones is imagined. One example is employed in signal system to explain its practical application and future prospect at last.


Key words: complex varied functions, Laurent integral, basis, signal system