大学物理 ›› 2023, Vol. 42 ›› Issue (3): 4-.doi: 10.16854 /j.cnki.1000-0712.220224

• 教学研究 • 上一篇    下一篇

一维有限深方势阱能量本征方程的泰勒级数解和二次近似解

徐聪,陈鹏,金光日   

  1. 浙江理工大学 物理学系,浙江 杭州310018
  • 收稿日期:2022-04-30 修回日期:2022-06-10 出版日期:2023-05-04 发布日期:2023-05-04
  • 通讯作者: 金光日, E-mail:grjin@zstu.edu.cn
  • 作者简介:徐聪(1998—),女, 浙江绍兴人, 浙江理工大学物理学系2021级硕士生.
  • 基金资助:
    浙理理工大学科学基金(18062145-Y);国家自然科学基金(12075209)资助

The Taylor-series approximation and the quadratic approximation  to the eigen-energy equation of a finite square potential well

XU Cong,CHEN Peng,JIN Guang-ri   

  1. Department of Physics,Zhejiang Sci-Tech University,Hangzhou,Zhejiang 310018,China




  • Received:2022-04-30 Revised:2022-06-10 Online:2023-05-04 Published:2023-05-04

摘要: 一维有限深方势阱能量本征方程的求解受限于超越方程,无法严格求解.本文将奇、偶宇称情况的超越方程归结为一个方程,自洽地给出两种近似解析解:一阶泰勒级数解和二次近似解.分析二者适用范围并做误差分析,发现泰勒级数解可以很好地理解能谱随量子数n平方变化的数值解 (即,所谓n平方律),但在特定参数R下失效,该参数正比于势阱宽度乘以势阱高度开方.二次近似解对所有参数R都适用,能谱在大R极限下,可退化为精确求解的无限深势阱情况.对于任意参数R,二次近似波函数的保真度始终大于99.7%.

关键词: 一维有限深方势阱, 束缚态, 超越方程, 能谱, 能量本征波函数

Abstract: The eigen-energy equation of a one-dimensional finite square potential well is subject to the tran-scendental equations,and therefore cannot be solved exactly.In this paper,we reduce the even-and the odd-parity equations into one equation,which can be solved consistently to obtain two approximated solutions,i.e.,the first-order Taylor-series solution and the quadratic approximation solution.From the validity of the two approximations and their error analysis,we find that the Taylor-series solution is useful to understand the numerical observation that the energy spectra increase with n2 (i.e.,the so-called n-square law),but fails for some specific values of R,where the parameter R is proportional to the width of the well multiplied by the square of the potential height.The quadratic approximation is applicable to all values of R.In the large R limit,the energy spectra reduce to the exactly solvable infinite-well case.For any R,the fidelity of the quadratic approximation wave function is always greater than 99.7%.


Key words: one-dimensional finite symmetric square well, the bound state, transcendental equation, energy spectrum, energy eigenwave function