大学物理 ›› 2017, Vol. 36 ›› Issue (12): 15-17.doi: 10.16854/j.cnki.1000-0712.2017.12.004

• 教学研究 • 上一篇    下一篇

双变量厄米多项式递推关系与积分公式的简捷推导

李恒梅,万志龙,王 震,黄红云,袁洪春   

  1. 1.常州工学院数理与化工学院,江苏常州213022;2.常州工学院电气与光电工程学院,江苏常州213022
  • 收稿日期:2017-05-27 修回日期:2017-07-20 出版日期:2017-12-20 发布日期:2017-12-20
  • 作者简介:李恒梅(1978—),女,江苏盐城人,常州工学院副教授,博士,主要从事理论物理的教学与研究工作.
  • 基金资助:
    常州工学院教研项目(A3-4400-17-063;A3-4406-16-049X)资助

A simple and neat approach to derive the recurrence relations and mathematical integral formulas of two-variable Hermite polynomial

LI Heng-mei1,WAN Zhi-long1,WANG Zhen1,HUANG Hong-yun1,YUAN Hong-chun2   

  1. 1.College of Mathematical Physics and Chemical Engineering,Changzhou Institute of Technology,Changzhou,Jiangsu 213022,China; 2.College of Electrical and Optoelectronic Engineering,Changzhou Institute of Technology,Changzhou,Jiangsu 213022,China
  • Received:2017-05-27 Revised:2017-07-20 Online:2017-12-20 Published:2017-12-20

摘要: 基于正规乘积和反正规乘积性质与双变量厄米多项式的母函数形式,利用相干态表象完备性的高斯积分形式,系统而全面的导出双变量厄米多项式的算符恒等式、递推关系与积分公式,此推导方法简捷明了.

Abstract: Based on the properties of normal(anti-normal)ordering product of quantum operators and Baker-Hausdorff operator equation,using the Gauss integral form of coherent state representation completeness,we derive some operator identities,recursive relations and integral formulas related to two-variable Hermite polynomial.Compared with other methods,this method is easier and neater in theory and application.

Key words: two-variable Hermite polynomial, normal ordering product, anti-normal ordering product, recursive relation, integral formula