大学物理 ›› 2024, Vol. 43 ›› Issue (01): 31-.doi: 10.16854/j.cnki.1000-0712.230077

• 大学生园地 • 上一篇    下一篇

共振激励和重力作用下一维水平弦垂直振动驻波理论与实验研究

蔡为睿,李智超,沈韩,王猛,方奕忠   

  1. 1.中山大学 物理学院,广东  广州510275;2. 中山大学 物理学国家级实验教学示范中心,广东  广州510275
  • 收稿日期:2023-03-14 修回日期:2023-04-10 出版日期:2024-03-01 发布日期:2024-03-06
  • 作者简介:蔡为睿(2003—),男,广东湛江人,中山大学物理学院物理专业2021级本科生.
  • 基金资助:
    国家自然科学基金(61871410)、中山大学质量工程项目(中山大学教务处(2022)20号,74130-12220011)资助

Theoretical and experimental research of vertical vibration standing-waves of one-dimensional horizontal string under resonant exciting and gravitational action

CAI Wei-rui1, LI Zhi-chao1, SHEN Han1,2, WANG Meng1,2, FANG Yi-zhong1,2   

  1. 1. School of Physics, Sun Yatsen University, Guangzhou, Guangdong 510275, China; 
    2. National Demonstration Center for Experimental Physics Education, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
  • Received:2023-03-14 Revised:2023-04-10 Online:2024-03-01 Published:2024-03-06

摘要: 本文用本征函数展开法和拉普拉斯变换求解了重力作用下水平放置的一端固定、另一端以极小振幅作垂直简谐振动的一维弦的竖向振动波动方程,得出解析解,得到弦(弹性绳)共振形成驻波时的所有本征频率,且本征频率和驻波波腹大小、位置均与重力无关. 实验上测量了驻波波腹的数目随共振频率变化的关系,利用理论推导出的波动方程中波速的表达式及测量弹性绳振动时的张力和绳子的长度,算出绳子的质量线密度,与实验值吻合,从另一角度验证了一维弦的横振动所满足的波动方程理论的正确性. 

关键词: 重力作用, 一维水平弦, 本征函数展开法, 拉普拉斯变换, 驻波

Abstract: By utilizing the eigen function expansion method and Laplace transformation, under gravitational action, the wave equation of vertical vibration of one-dimensional string which one end is fixed and the other end oscillates harmonically with a small amplitude is solved strictly. The explicit solution is acquired, and the resonant eigen frequencies that born the standing-waves of string (or called elastic rope) is got. It is also represented that the eigen frequencies and the standing-waves antinodes are all independent to gravity action. The linear changing relationship between the standing-waves loop numbers and the resonant frequency is observed and computed experimentally. Using the wave velocity expression in the wave equation derived theoretically together with the tension force and the length of elastic rope which measured while vibrating, the line mass density of rope is figured out. The result agrees well to the experimental value. From another angle, these works are well verified the correctness of wave equation of vertical vibration of one-dimensional string which elucidated by theory. 


Key words:  gravitational action, one-dimensional horizontal string, eigen function expansion method, Laplace transformation, standing-wave