大学物理 ›› 2024, Vol. 43 ›› Issue (12): 19-.doi: 10.16854/j.cnki.1000-0712.230429

• 教学讨论 • 上一篇    下一篇

倾斜量子摆本征问题的数值讨论

王世卓,翟学珍,冯世全,吴杰   

  1. 郑州轻工业大学 电子信息学院,河南 郑州450001 
  • 收稿日期:2023-11-22 修回日期:2024-04-12 出版日期:2025-02-15 发布日期:2025-02-26
  • 通讯作者: 吴杰,Email:zzuli_wujie@163.com
  • 作者简介:王世卓(1986—),男,河南舞阳人,郑州轻工业大学电子信息学院教师,博士,主要从事第一性原理输运理论计算研究工作.
  • 基金资助:
    教育部大学物理教学指导委员会大中衔接教学研究项目 (WX202220);教育部产学合作协同育人项目(2300706071180610);河南省2024 年高等教育教学改革研究与实践重点项目(2024SJGLX2019);校第十四批教改项目资助

Numerical disscussions on eigen-problem of inclined quantum pendulum

WANG Shi-zhuo, ZHAI Xue-zhen, FENG Shi-quan, WU Jie   

  1. School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou, Henan 450001, China
  • Received:2023-11-22 Revised:2024-04-12 Online:2025-02-15 Published:2025-02-26

摘要: 从整数阶角向Mathieu函数的特征值与特征函数出发,讨论了量子摆、谐振子和平面转子本征能量的区别与联系,分析了能级、摆面倾角和无量纲参数U0对概率密度分布的影响. 低能级的量子摆是非简并的,较高激发态能级的简并度为二,低能级量子摆的能量虽然与谐振子的接近,但概率密度的分布范围通常超过了经典单摆的情况,有多个因素影响倾斜量子摆的概率密度分布.

关键词: 量子摆, Mathieu函数, 概率密度

Abstract: Based on the eigenvalues and eigenfunctions of the angular Mathieu function, we disscusse the energy differences and relationships among the inclined quantum pendulum, harmonic oscillator and plane rotor. The probability density distribution influenced by energy levels, inclination angles and dimensionless parameter U0 are also analyzed. The lower energy level of quantum pendulum is non-degenerate, but the degeneracy of the quantum pendulum at higher excited state is two. Although the quantum pendulum energy at lower energy level is close to that of the harmonic oscillator, the probability density distribution generally exceeds that of the classical pendulum. Several factors affect the probability density distribution of inclined quantum pendulum.



Key words:  , quantum pendulum, Mathieu function, probability density