大学物理 ›› 2025, Vol. 44 ›› Issue (3): 8-.doi: 10.16854/j.cnki.1000-0712.240179

• 教学讨论 • 上一篇    下一篇

基于玻耳兹曼方程的载流子迁移率和热导率研究

唐菊红,杨凯科,周光辉   

  1. 湖南师范大学物理系,湖南, 长沙410081



  • 收稿日期:2024-04-15 修回日期:2024-09-26 出版日期:2025-05-09 发布日期:2025-05-29
  • 作者简介:杨凯科(1985—),男,湖南长沙人,湖南师范大学物理系教师,博士,主要从事半导体中的声子与电-声子输运物理研究.
  • 基金资助:
    湖南师范大学教学改革研究项目资助.

Investigation on the carrier mobility and thermal conductivity based on Boltzmann equation

TANG Juhong, YANG Kaike*, ZHOU Guanghui   

  1. Department of Physics, Hunan Normal University, Hunan, Changsha, Hunan 410081, China
  • Received:2024-04-15 Revised:2024-09-26 Online:2025-05-09 Published:2025-05-29

摘要: 迁移率和热导率是表征半导体材料及器件导电与导热能力的重要物理量.本文基于玻耳兹曼方程,介绍求解电子和空穴迁移率及晶格热导率的方法,并将其用于模拟体材料硅(Si)和单层二硫化钼(MoS2)的输运性质.结合第一性原理计算,揭示了Si和单层MoS2的载流子迁移率和热导率均随温度升高而下降,与实验结果一致.另外发现当载流子浓度低于1018cm-3或1012cm-2时,Si和MoS2的迁移率基本保持不变;而当载流子浓度高于1018cm-3或1012cm-2时,二者的迁移率随载流子浓度升高迅速减小.本研究将玻耳兹曼方程应用到晶体材料计算,对促进教学与科研互惠协同发展有重要意义.

Abstract: The carrier mobility and thermal conductivity are important physical quantities for characterizing the ability of conducting electricity and heat of semiconducting materials and devices. In this work, we describe the method of solving the electron and hole mobilities and the lattice thermal conductivity based on the Boltzmann equation, and then used it to simulate the transport properties of bulk Si and monolayer MoS2. Combined with first-principle calculations, we reveale that both the carrier mobility and thermal conductivity of Si and monolayer MoS2 decreases as temperature rises, in accordance with the experimental results. In addition, we have found that when the carrier concentration is less than 1018 cm-3 or 1012 cm-2, the carrier mobility of Si and MoS2 is almost constant; however, as the carrier concentration is higher than 1018 cm-3 or 1012 cm-2, the carrier mobility of Si and MoS2 is decreasing as the carrier concentration increases. This study, by applying the Boltzmann equation to crystal materials calculations, should be beneficial to promote the teaching and scientific research mutually and collaboratively development.

Key words: mobility, thermal conductivity, Boltzmann equation, Si-based semiconductors, 2D materials