大学物理 ›› 2025, Vol. 44 ›› Issue (10): 22-.doi: 10.16854/j.cnki.1000-0712.240477

• 教学讨论 • 上一篇    下一篇

准精确可解系统的主要方法

石佳轩,曲飞阳   

  1. 海南师范大学物理与电子工程学院,海南 海口2571158
  • 收稿日期:2024-10-21 修回日期:2025-02-24 出版日期:2025-12-20 发布日期:2025-12-27
  • 作者简介:石佳轩(2000—),男,四川巴中人,海南师范大学物理与电子工程学院2022级硕士研究生

The main methods for quasi exact solvable systems

SHI Jiaxuan, QU Feiyang   

  1. College of Physics and Electronic Engineering, Hainan Normal University, Haikou, Hainan 571158, China
  • Received:2024-10-21 Revised:2025-02-24 Online:2025-12-20 Published:2025-12-27

摘要: 回顾了准精确可解系统(quasi exactly solvable)的研究历程与主要方法.QES系统介于精确可解和不可解系统之间,能够在特定条件下求解部分本征值和本征态.研究始于Razavy势,随后通过李代数、Heun方程、超对称量子力学(supersymmetric quantum mechanics)和Bethe Ansatz方法逐步发展.这些解析工具揭示了QES系统的对称性与复杂结构,扩展了可解模型的范围.文章还讨论了预势方法的应用及QES系统未来可能的研究方向,包括非厄米量子系统和实验验证等.QES系统的研究对多个物理学领域具有深远影响.

关键词: 准精确可解, Heun方程, Bethe Ansatz方法

Abstract:  Reviewed the research history and main methods of quasi exactly solvable systems The QES system falls between precisely solvable and unsolvable systems and is capable of solving some eigenvalues and eigenstates under specific conditions The research began with the Razavy potential and gradually developed through Lie algebra, Heun equations, supersymmetric quantum mechanics, and the Bethe Ansatz method These analytical tools reveal the symmetry and complex structure of QES systems, expanding the scope of solvable models The article also discusses the application of pre potential methods and possible future research directions for QES systems, including non Hermitian quantum systems and experimental verification The research on QES system has a profound impact on multiple fields of physics


Key words: quasi exactly solvable, heun equation, bethe ansatz method