大学物理 ›› 2025, Vol. 44 ›› Issue (10): 111-.doi: 10.16854/j.cnki.1000-0712.240546

• 大学生园地 • 上一篇    下一篇

基于数字激光散斑法精确测量微小电荷量

易佳雄,姚川森,房熊俊   

  1. 湖南师范大学物理与电子科学学院,湖南长沙410081
  • 收稿日期:2024-11-23 修回日期:2024-12-07 出版日期:2025-12-20 发布日期:2025-12-29
  • 作者简介:易佳雄(2004—) ,男,湖南宁乡人,湖南师范大学物理与电子科学学院2022级物理专业本科生
  • 基金资助:
    湖南师范大学教改项目(202101065001)资助

Accurate measurement of small electric charges based on digital speckle pattern interferometry

YI Jiaxiong, YAO Chuansen, FANG Xiongjun   

  1. School of Physics and Electronics, Hunan Normal University, Changsha  410081, China
  • Received:2024-11-23 Revised:2024-12-07 Online:2025-12-20 Published:2025-12-29

摘要: 本文采用无接触式的光学测量手段,利用数字激光散斑法实现了对微小电荷量的精确测量.研究平行板电场强度分布,通过对带电物体的静力学分析,将微小电荷量的测量问题转化为小角度偏转的测量问题.借助毛玻璃片的散射特性,利用CCD感光器件记录散斑图像,并通过灰度处理、快速傅里叶变换等步骤得到散斑干涉条纹,从而实现了微小电荷的无接触式测量.基于本文的测量装置和实验方法,在普通实验室环境下即可实现对低至0.1~1.0 nC量级的微小电荷量的测量.与仿真结果比较,发现测量结果具有较高的准确度.本文为无接触条件下精确测量微小电荷量提供了新思路.


关键词: 数字激光散斑法, 微小电荷, 无接触式测量

Abstract: This paper proposes a noncontact optical measurement method based on digital speckle pattern interferometry (DSPI) to achieve precise quantification of small charges. By investigating the electric field distributions in parallelplate capacitor systems and analyzing the forces acting on charged objects, the challenge of charge measurement is converted into a problem of angular deflection detection. Leveraging the diffuse reflection characteristics of a ground glass plate, speckle patterns are captured using a CCD sensor. Through sequential grayscale conversion, Fast Fourier Transform (FFT) processing, and phase extraction algorithms, the interference fringes of speckles are reconstructed, thereby enabling noncontact charge measurement. The developed system achieves precise measurements of charges ranging from 0.1 nC to 1.0 nC under standard laboratory conditions, showing high consistency with simulation results. This work establishes a novel strategy for contactless precision measurement of small charges.



Key words:  digital speckle pattern interferometry (DSPI), small charges, noncontact optical measurement