大学物理 ›› 2025, Vol. 44 ›› Issue (10): 64-.doi: 10.16854/j.cnki.1000-0712.240572

• 教学改革 • 上一篇    下一篇

科教融合背景下电磁学教学研究——安培环路定理的拓扑溯源

WANG Xiaoran, Li Chunmi, ZHAO Xiaoming, YANG Mingchao, KOU Supeng   

  1. 1. 河北师范大学 教师教育学院,石家庄050000;2. 北京师范大学 物理与天文学院,北京100875 ;
    3. 北京科技大学 物理学系,北京100875; 4. 河北科技师范学院 物理科学与技术学院,秦皇岛066000
  • 收稿日期:2024-12-07 修回日期:2025-02-12 出版日期:2025-12-20 发布日期:2025-12-26
  • 作者简介:王晓然(1992—),女,河北邯郸人,河北师范大学教师教育学院 讲师,博士,主要从事物理教学法研究和拓扑物态研究工作.
  • 基金资助:
    河北师范大学人文社会科学基金(S22B040)资助;河北省教育厅科学研究项目(QN2025447)资助

Research on Electromagnetic Teaching under the integration of science #br# and education-Topological origin of Ampères circuital law#br#

Research on Electromagnetic Teaching under the integration of science #br# and education-Topological origin of Ampères circuital law#br#   

  1. 1. School of Teacher Education, Hebei Normal University, Shijiazhuang 050000,China;
    2. Department of Physics Beijing Normal University,Beijing 100875,China;
    3. School of Mathematic and Physics, Beijing University of Science and Technology 100875,China;
    4. Hebei Normal University of Science and Technology, School of Physical Science and Technology, Qinhuangdao 066000, China
  • Received:2024-12-07 Revised:2025-02-12 Online:2025-12-20 Published:2025-12-26

摘要: 在科教融合的时代背景下,将科学研究的概念、方法及过程融入本科教学是培养具有开放思维、创新精神和创新能力的拔尖创新人才的有效途径.精准找到教材知识和科研内容的连接点是其落实的关键点.本文以电磁学中安培环路定理为例,通过其证明过程与拓扑学概念环绕数的天然适切性,深入挖掘安培环路定理的拓扑起源,明确矢量场积分环路微调不变的拓扑本质.使得学生深刻理解安培环路定理及矢量场性质的同时,了解拓扑学纽结理论初步.同时,在追溯科学知识形成的过程中,理解科学探究精神,掌握科学探究方法,潜移默化培养学生创新精神和创新能力.为将科学研究的概念、方法及过程融入高校课堂教学提供了有效方法及范例.

关键词: 纽结拓扑, 环绕数, 安培环路定理

Abstract:  In the context of the integration of science and education, integrating the concepts, methods, and processes of scientific research into undergraduate teaching is an effective way to cultivate top-notch innovative talents with open thinking, innovative spirit, and innovative ability. Accurately finding the connection point between textbook knowledge and scientific research content is the key to its implementation. This article takes Amperes circuital law in electromagnetics as an example and finds that its proof process is naturally appropriate for the topological concept of the number of loops. Explore the topological origin of Amperes circuital law and clarify the topological essence of magnetic field integral loop fine-tuning invariance.Enable students to have a profound understanding of Amperes circuital law and vector field properties, while also gaining a preliminary understanding of topology knot theory.At the same time, in tracing the formation of scientific knowledge, understanding the spirit of scientific inquiry, mastering scientific inquiry methods, and subtly cultivating students innovative spirit and ability. This provides effective methods and examples for integrating the concepts, methods, and processes of scientific research into classroom teaching in universities.

Key words:  knot topology, linking number, Amperes circuital law