大学物理 ›› 2025, Vol. 44 ›› Issue (6): 53-.doi: 10.16854/j.cnki.1000-0712.250109

• 教学改革 • 上一篇    下一篇

从伯努利方程到海拔计算的教学案例分析

殷航,孙江凯,叶龙,冯林,郝晓涛,郭亮,刘建强   

  1. 1. 山东大学物理学院,物理国家级实验教学示范中心,山东 济南250100;
    2.  天津大学材料学院,天津300072;3.  喀什大学物理与电气工程学院,新疆 喀什844009
  • 收稿日期:2025-03-05 修回日期:2025-04-10 出版日期:2025-07-15 发布日期:2025-08-09
  • 作者简介:殷航(1989—),男,山东青岛人,山东大学物理学院教授,博士,主要从事大学物理教学、有机电子学研究工作.
  • 基金资助:
    教育部高等学校大学物理课程教指委立项项目(DJZW202320hd、DJZW202363、DJZW202314xb);山东省本科教学改革项目(Z2024030、M2022334);山东大学教育教学改革研究项目(2024Z24);喀什大学教研教改课题(KJCZ2102)资助

Analysis ofteaching cases from Bernoulli equation to altitude calculation

YIN Hang1, SUN Jiangkai1, YE Long2, FENG Lin1, HAO Xiaotao1, GUO Liang3, LIU Jianqiang1,3#br#   

  1. 1. School of Physics, National Physical Experiment Teaching Demonstration Center, Shandong University, 
    Jinan, Shandong, 250100, China; 2. School of Materials, Tianjin University, Tianjin, 300072, China; 
    3. School of Physics and Electrical Engineering, Kashi University, Kashi, Xinjiang, 844009, China
  • Received:2025-03-05 Revised:2025-04-10 Online:2025-07-15 Published:2025-08-09

摘要: 在教育强国建设的时代背景下,创新型人才的需求日益增加,创新型人才的培养也成为我国高校教育教学的重要改革目标与方向.创新型人才培养的关键在于优化学生思维方式.本文利用一个从伯努利方程到海拔计算的课堂教学案例,通过启发性教学方法和优化课程设计,在大学物理课堂教学中通过探究题目求解新途径,促进学生自主思维能力的形成,提升其独立解决问题的能力,以便更好地适应当今社会对创新型人才的需求.

关键词: 伯努利方程, 自主思维, 新途径, 创新型人才

Abstract: Under the backdrop of building a strong education country, the demand for innovative talents is increasing day by day, and the cultivation of innovative talents has become an important reform goal and direction for higher education and teaching in Chinese universities. The key to cultivating innovative talents lies in optimizing students thinking patterns. Using a classroom teaching case from Bernoulli equation to altitude calculation, this article explores new ways to solve problems in college physics teaching through inspiring teaching methods and optimizing course design, promoting the formation of students independent thinking ability and enhancing their ability to solve problems independently, in order to better meet the demand for innovative talents in todays society.

Key words: Bernoulli equation, autonomous thinking, new approaches, innovative talents