大学物理 ›› 2025, Vol. 44 ›› Issue (5): 65-.doi: 10.16854/j.cnki.1000-0712.250153

• 大学生园地 • 上一篇    下一篇

消除统计物理中吉布斯佯谬的新方法

魏玉鑫,徐博,刘全慧   

  1. 1. 湖南大学 理论物理研究所,湖南 长沙410082; 2. 湖南大学 材料科学与工程学院,湖南 长沙410082;
    3. 湖南大学 物理与微电子科学学院,湖南 长沙410082
  • 收稿日期:2025-03-21 修回日期:2025-04-03 出版日期:2025-07-01 发布日期:2025-07-28
  • 通讯作者: 刘全慧,E-mail: qhliu@hnu.edu.cn
  • 作者简介:魏玉鑫(2003—),男,湖南岳阳人,湖南大学材料科学与工程学院2021级本科生.
  • 基金资助:
    湖南省重点教改基金(HNJG20230147);湖南大学大学生创新创业训练计划(S202410532093)资助

A new method to eliminate the Gibbs paradox in statistical physics

Wei Yuxin1, Xu Bo2, Liu Quanhui2   

  1. 1. School for Theoretical Physics, College of Materials Science and Technology, Hunan University, 
    Changsha 410082; 2. College of Physics and Electronics, Hunan University, Changsha 410082
  • Received:2025-03-21 Revised:2025-04-03 Online:2025-07-01 Published:2025-07-28

摘要: 统计物理吉布斯佯谬指的是玻耳兹曼统计给出的经典理想气体熵不具有广延性,与实验结果不符.因为粒子本质上是量子,同种粒子之间具有不可分辨,所以可以通过引入一个不可分辨因子来解决这一佯谬.本文提供了一种自动给出理想气体熵的广延性结果的计算方法,核心是求助于粒子数表象.这种方法具有明显优点:不必求助于量子统计,也不用求助于热力学中熵公式的积分函数或者其它人为修正的方式.

关键词: 统计物理, 吉布斯佯谬, 熵, 广延性, 粒子数表象

Abstract: The Gibbs paradox in statistical physics refers to the fact that the entropy of a classical ideal gas given by Boltzmann statistics is not extensive, which is inconsistent with experimental results. The conventional solution is that particles are inherently quantum, and indistinguishable. Therefore, the paradox can be resolved by introducing an indistinguishability factor. This paper provides a new calculation method that automatically gives the correct expression of the entropy of an ideal gas, the core of which is to resort to the particle number representation. This method has obvious advantages: there is no need to resort to quantum statistics, nor to the integral function of the entropy formula in thermodynamics or other artificial corrective methods, etc.

Key words: statistical physics, Gibbs paradox, entropy, extensibility, particle number representation