大学物理 ›› 2011, Vol. 30 ›› Issue (1): 19-19.

• 著者文摘 • 上一篇    下一篇

角动量量子数l的升降算符和球谐函数的生成

寻大毛 荣小平 刘全慧   

  1. 湖南大学理论物理研究所、应用物理系,湖南长沙410082
  • 出版日期:2011-01-25 发布日期:2011-01-20

Raising and lowering operators for angular momentum quantum number l and generation of the spherical harmonics

  • Online:2011-01-25 Published:2011-01-20

摘要: 1999年喀兴林先生在《高等量子力学》一书中首次提出角动量量子数l的升降算符,这个算符其实是一秩不可约张量算符的一个简单实现.当给定一个磁量子数m,降算符能给出最小量子数l的状态,进而得到全部球谐函数的最低态|0,0〉.而通过升降算符的恰当组合,作用在这个最低态上就可以生成任意球谐函数|lm〉.

关键词: 量子力学, 角动量, 量子数, 升降算符

Abstract: Two vector operators aimed at shifting angular momentum quantum number l in spherical harmonics |lm〉,primarily proposed by X.L.Ka in 1999,are in fact first rank irreducible tensor operators.For a given magnetic quantum number m,specific state |lm〉 in spherical harmonics with the lowest angular momentum quantum number l is obtained and how to use this state to generate whole set of spherical harmonics is illustrated.

Key words: quantum mechanics, angular momentum, quantum number, raising and lowering operators

中图分类号: 

  • O413.1