大学物理 ›› 2015, Vol. 34 ›› Issue (1): 12-12.
• 著者文摘 • 上一篇 下一篇
周国全
出版日期:
发布日期:
Online:
Published:
摘要: 导出了平方反比中心力场的龙格-楞次矢量的一种张量积形式,即由运动质点的能动张量与位置矢量的张量积构成;给出了其守恒性的统一的数学证明;在此张量积表达形式的基础上罗列并证明了该守恒矢量的若干性质;推导并讨论了质点作各类开普勒运动的判据,尤其是束缚态椭圆轨道的能量公式.
关键词: 龙格-楞次矢量, 中心力场, 开普勒运动, 万有引力, 库仑力, 轨道判据
Abstract: A unified tensor- product representation of Runge- Lenz vector about inversely- quadric and centric- force systems,including both the two- body Kepler system under gravitation and the two point- charge system under Coulomb force,is given by introducing the energy- momentum tensor of a centric- force system. Based on the unified tensor- product representation,its conservation is demonstrated in a unified form; some properties of the vector are shown and verified. Meanwhile the criteria for every kinds of Kepler movement are derived,too. Specially a simple method of deriving the energy formula for the case of elliptic- trajectory movement is displayed in the end.
Key words: Runge-Lenz vector, centric force, Kepler movement, gravitation, Coulomb force, trajectory criterion
中图分类号:
周国全. 龙格-楞次矢量的张量积形式及其应用[J]. 大学物理, 2015, 34(1): 12-12.
0 / / 推荐
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文: https://dxwl.bnu.edu.cn/CN/
https://dxwl.bnu.edu.cn/CN/Y2015/V34/I1/12
Cited