大学物理 ›› 2016, Vol. 35 ›› Issue (5): 8-10.

• 编者按 • 上一篇    下一篇

一种导出谐振子任意次幂算符矩阵元的简捷方法

万志龙;李恒梅;黄红云;王 震   

  1. 1. 常州工学院 数理与化工学院,江苏 常州 213002; 2. 中国科学技术大学 材料科学与工程系,安徽 合肥 230026
  • 收稿日期:2014-07-13 修回日期:2015-11-03 出版日期:2016-05-20 发布日期:2016-05-20
  • 作者简介:万志龙( 1981—),男,江苏江阴人,常州工学院数理与化工学院讲师,博士在读.主要从事量子光学的研
  • 基金资助:
    常州工学院教研项目( A3-4400-15-069)资助

A concise approach to derivation of operator matrix element of

WAN Zhilong, LI Hengmei, HUANG Hongyun, WANG Zhen   

  1. School of Mathematical and Chemical Industry, Changzhou Institute of Technology, Changzhou, Jiangsu 213002, China Department of Materials science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
  • Received:2014-07-13 Revised:2015-11-03 Online:2016-05-20 Published:2016-05-20

摘要: 引入算符厄米多项式并用其正规乘积展开式和反演式,推导出了谐振子任意次幂坐标算符〈 m | X k | n〉和动量算符〈 m | P k | n〉的通式,并对所得结果进行了讨论,这是一个简捷而全新的推导方法.

关键词: 谐振子 , 厄密多项式算符 , 矩阵元 , 正规乘积

Abstract: By introducing the Hermite polynomial operator, we derive its normally ordered expansion and inversion equation. The general formula of 〈 m | X k | n〉and 〈 m | P k | n〉for harmonic oscillator are deduced and the result is also discussed.

Key words: harmonic oscillator, Hermite polynomial operator;matrix element, normally ordered product