大学物理 ›› 2016, Vol. 35 ›› Issue (8): 18-21.

• 编者按 • 上一篇    下一篇

对量纲法求分形物体转动惯量的再思考

方伟1,2,涂泓1,2,冯杰1   

  1. 1. 上海师范大学物理系,上海200234; 2. 上海市星系和宇宙学半解析研究重点实验室,上海200234
  • 收稿日期:2015-01-23 修回日期:2015-12-30 出版日期:2016-08-20 发布日期:2016-08-20

Revisit on the dimension analysis to calculate the moment of inertia of fractal body

FANG Wei1,2,TU Hong1,2,FENG Jie1   

  1. 1. Department of Physics,Shanghai Normal University,Shanghai 200234,China; 2. Shanghai Key Lab for Astrophysics,Shanghai 200234,China
  • Received:2015-01-23 Revised:2015-12-30 Online:2016-08-20 Published:2016-08-20

摘要: 指出数学上无穷阶的分形与物理上可实现的有限阶分形物体之间的差别.利用n 阶分形三角形与n-1 阶分形三角形的相似性,根据标度变换和量纲分析法,得到n 阶分形三角形转动惯量的递推公式,进而得到转动惯量的最终表达式.该结果在n趋向无穷大时与无穷阶分形物体的结果一致.

关键词: 量纲分析, 分形, 转动惯量, 递推法

Abstract: The difference between ideal infinite-order fractal in mathematical sense and real finite-order fractal in physical sense is distinguished. Using scale transformation and dimension analysis,the recurrence formula for the moment of inertia of n-order fractal triangle is obtained,which leads to the final expression for the moment of inertia When n tends to infinity,the result of this expression is in accordance with infinite-order fractal objects.

Key words: dimension analysis, fractal, moment of inertia, recurrence