大学物理 ›› 2017, Vol. 36 ›› Issue (2): 28-33.doi: 10.16854 /j.cnki.1000-0712.2017.02.008

• 编者按 • 上一篇    下一篇

一种绳约束两质点的运动研究

舒新文,许新胜,姚关心,侯长健   

  1. 安徽师范大学物理与电子信息学院,安徽芜湖241000
  • 收稿日期:2016-04-18 修回日期:2016-07-05 出版日期:2017-02-20 发布日期:2017-02-20
  • 作者简介:舒新文( 1982—) ,男,安徽怀宁人,安徽师范大学副教授,博士,主要从事大学物理教学和天体物理研
  • 基金资助:
    安徽省自然科学基金( 1608085QA06) 资助

Study of motion of string-bound two-body particles

SHU Xin-wen,XU Xin-sheng,YAO Guan-xin,HOU Chang-jian   

  1. School of Physic and Electronic Information,Anhui Normal University,Wuhu,Anhui 241000,China
  • Received:2016-04-18 Revised:2016-07-05 Online:2017-02-20 Published:2017-02-20

摘要: 研究一种绳约束下两质点运动的动力学模型和运动规律,分别采用泰勒级数展开的方法和四阶龙格-库塔数值方法,得到了质点运动微分方程的近似解和数值解.通过对系统的动力学方程计算,给出了位置矢量随时间的演化曲线、运动相图和运动轨迹.研究发现系统的运动与初始位置和速度有关,在初速度较大和较小时,系统作非线性周期性运动.存在临界初始速度,使得系统处于平衡态,在微小扰动下系统在初始位置附近作近似简谐振动.以上研究结果对微小振动力学问题的教学   和科研具有一定的参考价值.

关键词: 绳约束, 非线性周期运动, 数值解, 解析解, 有心力

Abstract: The dynamics model and the motion of string-bound two-body particles are studied.By using the Taylor series expansion method and the Runge- Kutta numerical method,the approximate and numerical solution of differential equations are obtained,respectively.Calculations of the dynamic equation give the evolution of position vector as a function of time,motion trajectory and phase diagrams. The motion of particle depends on the initial position and transverse velocity.For a larger or smaller initial transverse velocity,the motion is non-linear oscillation. There is a critical initial velocity at which the two-body system is in mechanical equilibrium,and will perform harmonic vibration under small perturbation.The results are valuable for teaching and research on the mechanics   problems of micro-vibrations.

Key words: string - bound, non - linear oscillations, numerical solution, analytical solution, central force