大学物理 ›› 2021, Vol. 40 ›› Issue (3): 25-28.doi: 10.16854 /j.cnki.1000-0712.200148

• 教学讨论 • 上一篇    下一篇

几何化在相对论解题中的应用

冯晓明,程敏熙   

  1. 华南师范大学物理与电信工程学院物理国家级实验教学示范中心,广东广州510006
  • 收稿日期:2020-04-20 修回日期:2020-06-24 出版日期:2021-03-20 发布日期:2021-03-22
  • 通讯作者: 程敏熙,E-mail: chengmx@ scnu.edu.cn
  • 作者简介:冯晓明( 1996—) ,男,广东肇庆人,华南师范大学物理与电信工程学院2019 级硕士研究生,研究方向为学科教学( 物理) .
  • 基金资助:
    华南师范大学2019 年质量工程项目资助

Application of geometry in solving problems of relativity theory

FENG Xiao-ming,CHENG Min-xi   

  1. National Demonstration Center for Experimental Physics Education,School of Physics and Telecommunication Engineering,South China Normal University,Guangzhou,Guangdong 510006,China
  • Received:2020-04-20 Revised:2020-06-24 Online:2021-03-20 Published:2021-03-22

摘要:  在解决相对论中关于参考系变换的问题时往往需要复杂冗长的计算,常用二惯性系映射法将计算问题转化为几何

问题,该法快速而直观,但初学者较难掌握.为体现洛伦兹变换的动态过程以及传递物理学在变化中追求不变性的价值观,本

文提出新的几何化方法即双曲旋转法.该法在二惯性系映射法的基础上以时空间隔不变性为依据进行双曲旋转,并辅以因果

关系的制约确定最终的几何化结果.以一道题目为例详细说明了两种几何化方法的应用.

关键词: 几何化, 二惯性系映射, 双曲旋转, 因果关系

Abstract: In solving the problems about reference frame transformation in the theory of relativity,it is often required

to have a long and complicated calculation. Two-inertial-system mapping is often used to transform the computational

problem into a geometric problem. This method is quick and intuitive but hard for beginners to grasp. To

express the dynamic process of Lorentz transformation and transfer physical pursuit invariance values,a new geometric

method named hyperbolic rotation was put forward. Based on the two inertial system mapping,the hyperbolic

rotation was carried out based on time-interval invariance and the final geometric results were determined by the restriction

of causality. There was an example to explain the application of two geometric methods in detail.

Key words: geometric, two inertial system mapping, hyperbolic rotation, causal relationship