大学物理 ›› 2023, Vol. 42 ›› Issue (1): 55-.doi: 10.16854/j.cnki.1000-0712.220299

• 大学生园地 • 上一篇    下一篇

二维、三维无限深环形势阱中波函数的求解与可视化

王玉凤,付柯,王跃超,隋林泓,姜梦媛,范亚茜,李喜彬   

  1. 内蒙古师范大学 物理与电子信息学院,内蒙古  呼和浩特  010022
  • 收稿日期:2022-06-18 修回日期:2022-07-26 出版日期:2023-03-14 发布日期:2023-03-13
  • 通讯作者: 李喜彬,E-mail: lxbimnu@imnu.edu.cn
  • 作者简介:王玉凤(2000—),女,内蒙古赤峰人,内蒙古师范大学物理与电子信息学院2019级本科生.
  • 基金资助:
    国家自然科学基金(11864030);内蒙古自治区自然科学基金(2021LHBS01001);内蒙古师范大学引进高层次人才科研启动(2020YJR001);内蒙古自治区优秀人才(5909002107);产学合作协同育人(202102084007)资助

Solution and visualization of wave functions in two-dimensional and  three-dimensional infinite deep annular potential wells

WANG Yu-feng,FU Ke, WANG Yue-chao, SUI Lin-hong,  JIANG Meng-yuan, FAN Ya-xi, LI Xi-bin   

  1. College of Physics and Electronic Information, Inner Mongolia Normal University, Huhhot, Inner Mongolia 010022, China  
  • Received:2022-06-18 Revised:2022-07-26 Online:2023-03-14 Published:2023-03-13

摘要: 利用分离变量法对二维以及三维无限深环形势阱的薛定谔方程求解,径向方向波函数的本征值由贝塞尔函数的交叉乘积组合零点确定. 对于三维的情况,可以求得基态波函数的解析解,而激发态的波函数则由数值方法给出其径向的概率密度分布. 对于二维的无限深环形势阱,基态以及激发态的径向概率密度分布均通过数值方法给出.

关键词: 薛定谔方程, 无限深势阱, 波函数, 能级, 本征问题, 贝塞尔函数, 数值方法

Abstract: The Schrodinger equation of two-dimensional and three-dimensional infinite deep annular potential wells is solved by the method of separating variables. The eigenvalue of the radial wave function is determined by the zero point of the cross product combination of the Bessel function. For the three-dimensional case, the analyticalsolution of the ground state wave function can be obtained. For the excited state wave function, the radial probability density distribution is given by numerical method. For the two-dimensional infinite deep annular potential well, the radial probability density distributions of ground state and excited state are given by numerical method.


Key words: Schrodinger equation, infinite deep potential well, wave function, energy level, intrinsic problems, Bessel function, numerical method