大学物理 ›› 2025, Vol. 44 ›› Issue (4): 39-.doi: 10.16854/j.cnki.1000-0712.240392

• 教学讨论 • 上一篇    下一篇

非厄米哈密顿量的厄米理论分析

张莲莲,范璐宁,江翠,李家锐   

  1. 1. 东北大学 理学院物理系,辽宁沈阳110819;2. 沈阳工程学院 基础部,辽宁沈阳110136
  • 收稿日期:2024-08-26 修回日期:2024-10-22 出版日期:2025-06-25 发布日期:2025-07-01
  • 作者简介:张莲莲(1980―),女,朝鲜族,吉林通化人,东北大学理学院副教授,博士,主要从事低维体系的电子结构、能带、量子输运等方面的研究及应物专业本科生的教学工作.
  • 基金资助:
    东北大学理学院2024年教育教学改革研究项目(02060012301000)

Analysis of non-Hermitian Hamiltonian based on Hermitian theory

ZHANG Lianlian1, FAN Luning1, JIANG Cui2, LI Jiarui1   

  1. 1. Department of Physics, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China; 
    2. Basic Department, Shenyang Institute of Engineering, Shenyang, Liaoning 110136, China
  • Received:2024-08-26 Revised:2024-10-22 Online:2025-06-25 Published:2025-07-01

摘要: 本文在量子力学教学改革探索与实践中加入了非厄米部分的讨论,将非互易哈密顿量的矩阵拆解为厄米哈密顿量和非互易微扰两部分,利用非简并微扰方法求解了能量本征值和本征态,发现所得结果与直接将非互易哈密顿量对角化后做展开的结果完全一致.这说明非互易哈密顿量与厄米量子理论存在一定联系.相信本文结果有助于进一步理解非互易哈密顿量的物理性质.

关键词: 非互易, 哈密顿量, 对角化, 非简并微扰

Abstract: This paper incorporates the discussion of nonHermitian quantum systems into the exploration and practice of quantum mechanics teaching reform. It decomposes the matrix of nonreciprocal Hamiltonian into Hermitian Hamiltonian and nonreciprocal perturbation, and uses nondegenerate perturbation method to solve the energy eigenvalues and eigenstates. It is found that the obtained results are completely consistent with the results obtained by directly diagonalizing the nonreciprocal Hamiltonian and expanding it to secondorder approximation. This indicates that there is a certain connection between non reciprocal Hamiltonian and Hermitian quantum theory.   We believe that the results of this work will help further understand the physical properties of nonreciprocal Hamiltonian.

Key words: nonreciprocal, Hamiltonian, diagonalizing, non-degenerate perturbation