大学物理 ›› 2025, Vol. 44 ›› Issue (5): 76-.doi: 10.16854/j.cnki.1000-0712.240139

• 大学生园地 • 上一篇    下一篇

固定边界的圆膜受迫振动问题求解及可视化

何卓妍,郭琴   

  1. 江西师范大学 物理与通信电子学院,江西 南昌330022
  • 收稿日期:2024-03-21 修回日期:2024-06-27 出版日期:2025-07-01 发布日期:2025-07-28
  • 作者简介:何卓妍(2002—),女,广东佛山人,江西师范大学物理与通信电子学院2021级本科生.
  • 基金资助:
    江西省高等学校教学改革研究重点项目(JXJG-23-2-9)资助

Solution and visualization of forced vibration of a circular membrane #br# with fixed boundary#br#

HE Zhuo-yan, GUO Qin   

  1. College of Physics and Communication Electronics , Jiangxi Normal University, Nanchang 330022, China
  • Received:2024-03-21 Revised:2024-06-27 Online:2025-07-01 Published:2025-07-28

摘要: 本文以圆形薄膜为研究对象,采用分离变量法和冲量定理法分别研究了圆膜的自由振动和受迫振动问题,得到了贝塞尔函数形式的自由振动和受迫振动解,并对结果进行了可视化分析.研究发现:圆膜自由振动时,同一阶数,共振圆频率越大,褶皱越多;阶数越高,节径数目越多,褶皱形态更丰富.圆膜受迫振动时,由于设置的受迫外力与角度无关,在边界固定、无初始位移和初始速度的条件下,满足初始条件的圆膜受迫振动解也与角度无关,因此振动形态呈现出中心轴对称分布. 同一圆频率,不同时刻,褶皱数目基本相同,随着时间变化,中心波包围绕中心轴做上下起伏振动.同一时刻,随着圆频率的改变,圆膜的振动形态也在发生改变.同一圆频率,同一时刻,随着外力中的贝塞尔函数的根取值越大,圆膜振动的褶皱数越多.

关键词: 圆膜, 受迫振动, 分离变量法, 冲量定理法, 贝塞尔函数

Abstract: This paper takes circular membranes as the research object, and uses the separation of variables method and impulse theorem method to separately study their free vibration and forced vibration problems. The free vibration and forced vibration solutions in the form of Bessel functions are obtained, and the results are visualized and analyzed. Research has found that when a circular membrane vibrates freely, for the same order, the higher the resonant circular frequency, the more wrinkles it will have; The higher the order, the more the number of nodal diameters, and the more diverse the fold morphology. When a circular membrane is forced to vibrate, due to the set external force being independent of the angle, under the conditions of fixed boundaries, no initial displacement, and no initial velocity, the forced vibration solution of the circular membrane that satisfies the initial conditions is also independent of the angle, resulting in a centrally axisymmetric distribution of the vibration shape. At the same circular frequency and different times, the number of folds is basically the same. As time changes, the central wave packet oscillates up and down around the central axis. At the same time, as the circular frequency changes, the vibration pattern of the circular membrane also changes. At the same circle frequency and at the same time, as the root value of the Bessel function in the external force increases, the number of folds in the circular membrane vibration increases.

Key words: circular membrane, forced vibration, separation of variables method, theorem of impulse, Bessel function