大学物理 ›› 2025, Vol. 44 ›› Issue (7): 10-.doi: 10.16854/j.cnki.1000-0712.240502

• 教学研究 • 上一篇    下一篇

矢量算符的Rodrigues旋转公式及其应用

吴宁   

  1. 北京理工大学物理学院 量子技术研究中心,北京100081
  • 收稿日期:2024-11-01 修回日期:2025-02-20 出版日期:2025-09-01 发布日期:2025-09-16
  • 作者简介:吴宁(1985—),男,山东曲阜人,北京理工大学物理学院副教授,博士,主要从事量子物理研究工作.
  • 基金资助:
    科技创新 2030 重大项目“2023ZD0300703”资助

The Rodrigues rotation formula for vector operators and its applications

WU Ning   

  1. Center for Quantum Technology Research, School of Physics, Beijing Institute of Technology, Beijing 100081, China
  • Received:2024-11-01 Revised:2025-02-20 Online:2025-09-01 Published:2025-09-16

摘要: 本文利用矢量算符在旋转下的全局变换性质给出了其满足的Rodrigues旋转公式的经典推导方法,并将该公式应用于两个物理场景:1. 对发表于本刊的论文 \[闫二斌. 论角动量的态空间. 大学物理,2021, 40(10): 18-21\] 中提到的一个结论进行了深层次的刨析,2. 求解了静磁场部分沿任意方向的拉比问题.

关键词: 矢量算符, 空间转动, 自旋分量算符, 拉比问题

Abstract: Using the global transformation properties of vector operators under rotation operations, this paper presents a classical derivation of the Rodrigues formula satisfied by general vector operators. The formula is then applied to two physical examples: 1. We provide some further analysis regarding one of the main conclusions in \[YAN Er-bin. On the state space of angular momentum. College Physics, 2021, 40(10): 18-21\], 2. Solution of the Rabi problem with the static magnetic field pointing along an arbitrary direction.

Key words: vector operators, spatial rotations, spin component operator, Rabi problem