大学物理 ›› 2025, Vol. 44 ›› Issue (9): 56-.doi: 10.16854/j.cnki.1000-0712.240460

• 教学讨论 • 上一篇    下一篇

耦合振子的电磁感应透明现象

王彩榕,张林   

  1. 陕西师范大学 物理学与信息技术学院,陕西西安710119
  • 收稿日期:2024-10-13 修回日期:2025-03-03 出版日期:2025-11-11 发布日期:2025-11-19
  • 作者简介:王彩榕(2000—),女,河南范县人,陕西师范大学物理学与信息技术学院2023级硕士研究生,主要从事量子光学方向的研究工作.

Electromagnetic induction transparency of coupled oscillators#br# #br#

WANG Cairong, ZHANG Lin   

  1. School of Physics and Information Technology, Shaanxi Normal University, Shaanxi 716001, China
  • Received:2024-10-13 Revised:2025-03-03 Online:2025-11-11 Published:2025-11-19

摘要: 本文通过简单的经典耦合谐振子模型,广泛地解释了电磁感应透明(EIT)现象.通过类比原子系统中的三能级结构与耦合谐振子系统,首先展示了如何利用经典物理模型来模拟量子干涉所导致的透明现象.然后结合理论分析与数值模拟探讨耦合谐振子与EIT的相似性,发展了用经典力学的耦合模型去掌握量子相干效应核心机制的普遍方法.最后,根据该方法进一步探讨了光力学系统中的感应透明,即光力学感应透明(OMIT),展示了经典力学模型对大学物理教学渗透前沿物理进展和理解现代相关科研成果具有重要的理论意义.

关键词: 耦合谐振子, 电磁感应透明, 光力学感应透明, 量子干涉, 经典类比

Abstract:  This paper broadly explains the phenomenon of Electromagnetically Induced Transparency (EIT) through a simple classical coupled oscillator model. By drawing an analogy between the three-level structure in atomic systems and the coupled oscillator system, it first demonstrates how a classical physics model can simulate the transparency phenomenon caused by quantum interference. Subsequently, through theoretical analysis and numerical simulations, the similarities between coupled oscillators and EIT are explored, leading to the development of a general method for understanding the core mechanism of quantum coherence effects using classical coupled models. Finally, based on this method, the phenomenon of induced transparency in optomechanical systems, namely Optomechanically Induced Transparency (OMIT), is further investigated, showcasing the theoretical significance of classical mechanical models in integrating advancements in frontier physics into university-level physics education and in understanding modern scientific research outcomes.

Key words: coupled oscillators, electromagnetically induced transparency, optomechanically induced transparency, quantum interference, classical analogy