大学物理 ›› 2016, Vol. 35 ›› Issue (2): 5-5.
• 著者文摘 • 上一篇 下一篇
徐世民;徐兴磊;蒋继建
出版日期:
发布日期:
Online:
Published:
摘要: 利用微分-积分技巧和算符微商方法研究Wigner算符和Weyl对应规则,给出了Wigner算符的正规序形式,得到了一些特殊函数的新的微分形式.更有意义的是克服了积分发散的困难,给出了Wigner算符和Weyl对应规则的反正规序微分型表示式.最后给出几个计算实例.
关键词: 有序算符, Wigner算符, 算符微商, 积分发散
Abstract: Wigner operator and Weyl prescription are studied by virtue of the skill of differential-integral and the method of operators' differential quotient. The differential formula of Wigner operator in normal ordering is given, and new differential formulae of some special functions are obtained. It is more important that the integral divergent difficulty is smoothed away and the differential formula of Wigner operator and the Weyl prescription in anti-normal ordering are derived. Several examples are calculated.
Key words: ordered operator, Wigner operator, differential quotient of operators, integral divergence
中图分类号:
徐世民;徐兴磊;蒋继建. 基于反正规序技术的Weyl对应规则[J]. 大学物理, 2016, 35(2): 5-5.
0 / / 推荐
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文: https://dxwl.bnu.edu.cn/CN/
https://dxwl.bnu.edu.cn/CN/Y2016/V35/I2/5
Cited