大学物理 ›› 2015, Vol. 34 ›› Issue (5): 5-5.

• 著者文摘 • 上一篇    下一篇

用SU(2)代数法解量子力学中的第二类Poischl—Teller势能问题

阿克木哈孜·马力克[1] 张宏标[2]   

  1. [1]伊犁师范学院物理科学与技术学院,新疆伊宁835000 [2]东北师范大学物理学院,吉林长春130024
  • 出版日期:2015-05-25 发布日期:2015-05-20

Solving problem of the second Poschl-Teller potential in quantum mechanics by the SU(2) Lie algebra

  • Online:2015-05-25 Published:2015-05-20

摘要: 先通过运用量子动力学代数的方法引入升降算符解决了量子力学的一维空间中的第二类Poschl—Teller势能体系定态问题,然后利用这对升降算符构造一个与体系相关的SU(2)代数,进一步讨论第二类Poschl—Teller势能体系定态的本征值.

关键词: 量子动力学, 升降算符, 第二类Poischl-Teller势能体系, SU(2)李代数

Abstract: A quantum dynamical algebraic approach is proposed, which is associated with a pair of the raising and lowering opera- tors for solving the bound energy eigen-problem for one-dimensional quantum system with the second Poschl-Teller potential. In addi- tion, the SU(2) Lie algebra related to this quantum system can be built naturally based on the Hamilton operator as well as the raising and lowering operators. The eigen-values and eigen-functions of a physical system in the potential of this kind are also obtained by u- sing the present algebraic technique.

Key words: quantum dynamics, raising and lowering operators, the second Poschl-Teller potential system, SU(2) Lie algebra

中图分类号: 

  • O431.1