大学物理 ›› 2019, Vol. 38 ›› Issue (5): 48-.doi: 10.16854 /j.cnki.1000-0712.180543

• 大学生园地 • 上一篇    下一篇

驻波型热声制冷机的搭建及理论验证

张世红,汪寅鹏,严琪琪   

  1. 1.北京航空航天大学能源与动力工程学院,北京100191; 2.北京航空航天大学电子信息工程学院,北京100191; 3.北京航空航天大学物理科学与核能工程学院,北京100191
  • 收稿日期:2018-10-04 修回日期:2018-11-28 出版日期:2019-05-20 发布日期:2019-06-13
  • 通讯作者: 严琪琪,E-mail: yanqif110@ 163.com
  • 作者简介:张世红( 1997—) ,男,甘肃天水人,北京航空航天大学能源与动力工程学院2016 级本科生.
  • 基金资助:
    2018 北航校教改项目资助

Construction and theoretical verification of standing wave thermoacoustic refrigerator

ZHANG Shi-hong1,WANG Yin-peng2,YAN Qi-qi3   

  1. 1. School of Energy and Power Engineering,Beihang University,Beijing 100191,China; 2. School of Elctronic and Information Engineering,Beihang University,Beijing 100191,China; 3. School of Physics and Nuclear Energy Engineering,Beihang University,Beijing 100191,China
  • Received:2018-10-04 Revised:2018-11-28 Online:2019-05-20 Published:2019-06-13

摘要: 基于驻波特性和换热基本理论设计并搭建了一台驻波型热声制冷样机,并对利用压力声学和线性热声理论分析热

声效应的方法分别进行了验证.系列控制变量实验表明,当扬声器的驱动电压为7 V,驱动频率为315 Hz,无量纲化的热声堆

位置为0.27 时,样机冷端可获得2.16 K 的理想降温; 且扬声器的驱动电压在测定范围内对制冷量的影响呈现明显的正相关.

采用该实验装置的物理参数值,利用DeltaEC 程序和线性热声学理论的计算较好地吻合了实验结果,验证了这种分析方法的

可行性.

关键词: 热声制冷, 驻波, 驱动频率, 热声堆, 理论验证

Abstract: A prototype of standing wave thermoacoustic refrigerator is designed and constructed based on the

characteristics of standing wave and the basic theory of heat transfer. Besides,the methods of analyzing thermoacoustic

effect by pressure acoustics and linear thermoacoustic theory are verified respectively. The results of experiment

show that the cold side can obtain an ideal cooling of 2.16 K when the speaker driver voltage is 7 V,driving

frequency is 315 Hz,and dimensionless thermoacoustic stack location is 0. 27; the driving voltage of

loudspeaker has a positive correlation with the refrigerating capacity in the range of measurement. The experimental

results are well matched by the prediction of the DeltaEC program and linear thermoacoustic theory when use the

physical parameter values of the experimental device,which verifies the feasibility of this analysis method.

Key words: thermoacoustic refrigeration, standing wave, driving frequency, thermoacoustic stack, theoretical verification