大学物理 ›› 2025, Vol. 44 ›› Issue (4): 108-.doi: 10.16854/j.cnki.1000-0712.240302

• 大学生园地 • 上一篇    下一篇

非线性谐振子与无限深势阱的关系

刘子煜,谭俊豪,黄亚豪,玉苏普江·萨拉木   

  1. 喀什大学 物理与电气工程学院,新疆喀什844000
  • 收稿日期:2024-07-02 修回日期:2024-10-24 出版日期:2025-06-25 发布日期:2025-07-02
  • 作者简介:刘子煜(2001—), 男,山东淄博市人,喀什大学物理与电气工程学院2022级本科生.
  • 基金资助:
    新疆维吾尔自治区自然科学基金项目(2022D01A15);喀什大学创新创业训练项目(2024008X)资助

Relationship between anharmonic oscillator and  infinite square well

LIU Ziyu, TAN Junhao, HUANG Yahao, Yusupujiang Salamu   

  1. School of Physics and Electrical Engineering, Kashi University, Kashi, Xinjiang 844000, China
  • Received:2024-07-02 Revised:2024-10-24 Online:2025-06-25 Published:2025-07-02

摘要: 一维无限深势阱是量子力学中的重要模型,但其势能在边界上跃变,从而导致势能及波函数在跳跃点的导数无法确定.本文从连续非线性谐振子模型出发,采用有限差分法计算一维非线性谐振子能量本征值与本征函数,并将其与一维无限深势阱能量本征函数与本征值进行比较,验证一维无限深势阱是高阶非线性谐振子的渐近极限.

关键词: 无限深势阱, 非线性谐振子, 本征值, 本征函数

Abstract: The onedimensional infinite square well is an important model in quantum mechanics. However, its potential jumps at the boundaries, which leads to undefined derivatives of both the potential and the wave function at these points. In this paper, we start with the anharmonic oscillator model, use the finite difference method to calculate theeigenvalues and eigenfunctions of the onedimensional anharmonic oscillator, and then compare the results with the eigenfunctions and eigenvalues of the onedimensional infinite square well. We prove that the onedimensional infinite square well is the asymptotic limit of the higherorder anharmonic oscillator.

Key words: infinite square well, anharmonic oscillator, eigenvalues, eigenfunctions