大学物理 ›› 2025, Vol. 44 ›› Issue (11): 27-.doi: 10.16854/j.cnki.1000-0712.250034

• • 上一篇    下一篇

贝里相位一题多解和一题多问

任玲清,梁兆新   

  1. 浙江师范大学 物理学系,浙江金华321000
  • 收稿日期:2025-01-17 修回日期:2025-04-07 出版日期:2026-01-19 发布日期:2026-01-19
  • 作者简介:任玲清(2001—),女,浙江宁波人,浙江师范大学物理系2024级硕士研究生.
  • 基金资助:
    中国国家自然科学基金面上项目(12574301)和浙江省自然科学基金重点项目(LZ25A040004)

Multiple approaches and questions for Berry phase

REN Lingqing,LIANG Zhaoxin   

  1. Department of physics,Zhejiang Normal University,Jinhua,Zhejiang 321000,China
  • Received:2025-01-17 Revised:2025-04-07 Online:2026-01-19 Published:2026-01-19

摘要: 贝里相位是量子系统在其参数空间中经历绝热演化后波函数所累积的几何相位,其在拓扑物态研究、量子计算、材料科学等领域展现出广泛的应用前景.贝里相位涉及量子力学中的态矢量、参数空间、绝热演化等多个复杂概念,因此在量子力学教学过程中,如何理解这些概念并建立起它们之间的内在联系是教学难点和重点.本文采用一题多解和一题多问的教学方法,首先,在绝热近似条件下,通过六种不同的解析方法求得二能级模型的贝里曲率以及贝里相位的解析解,其次,通过求解该模型的精确解,得到了任意时刻的波函数,并据此研究了非绝热情况下的几何相位;满足绝热条件时该几何相位过渡到贝里相位;最后,从多个角度对贝里相位进行深入解析,并比较各个求解方法之间的优缺点,从而加深了对贝里相位的理解和认知.

关键词: 贝里相位, 绝热近似, 二能级模型, 角动量

Abstract: The Berry phase represents a geometric phase accumulated by the wave function of a quantum system following adiabatic evolution within its parameter space,showcasing extensive application potential in areas such as topological states of matter,quantum computing,and materials science. This concept encompasses complex quantum mechanical notions,including state vectors,parameter space,and adiabatic evolution. Consequently,in the instruction of quantum mechanics,comprehending these concepts and establishing their inherent connections present a significant challenge. In this paper,we employ a pedagogical approach that entails exploring multiple solutions and posing multiple questions for a single problem. Initially,under the adiabatic approximation,we derive the Berry curvature and the analytical solution for the Berry phase of a twolevel model using six distinct analytical methods. Subsequently,by obtaining the exact solution of the model,we determine the wave function at any given time,enabling us to investigate the Berry phase in nonadiabatic scenarios. We present a novel expression for the Berry phase,highlighting its intimate relationship with spin arrangement. Lastly,we conduct an indepth analysis of the Berry phase from various perspectives and compare the merits and demerits of each solution method,thereby enhancing our understanding and cognition of the Berry phase.


Key words:  Berry phase, adiabatic approximation, twolevel model, angular momentum