薛定谔方程,一维无限深势阱,傅里叶变换," /> 薛定谔方程,一维无限深势阱,傅里叶变换,"/> Schr?dinger  equation,one-dimensional infinite potential well,Fourier transform,"/> 傅里叶变换法求解两类简单的薛定谔方程

大学物理 ›› 2020, Vol. 39 ›› Issue (03): 24-27.doi: 10.16854 / j.cnki.1000-0712.190308

• 教学讨论 • 上一篇    下一篇

傅里叶变换法求解两类简单的薛定谔方程

罗 光,谭 鑫,刘 平   

  1. 重庆师范大学物理与电子工程学院,重庆 401331
  • 收稿日期:2019-07-09 修回日期:2019-10-13 出版日期:2020-03-20 发布日期:2020-03-13
  • 作者简介:罗光(1973—),男,江西南康人,重庆师范大学物理与电子工程学院教授,博士,研究方向为现代材料测试技术和理论物理.
  • 基金资助:

    重庆市科委自然科学基金(cstc2012jjA50018);重庆市教委理科科研项目(KJ12O613);重庆师范大学国家基金预研项目(16XYY31)资助

Solution of two simple Schrödinger equations by Fourier transform method

LUO Guang,TAN Xin,LIU Ping   

  1. College of Physics and Electronic Engineering,Chongqing Normal University,Qhongqing 401331,China
  • Received:2019-07-09 Revised:2019-10-13 Online:2020-03-20 Published:2020-03-13

摘要:

自由粒子和一维无限深势阱的薛定谔方程的求解是量子力学较为基础的内容. 本文采用傅里叶变换对这两类简单的薛定谔方程进行了求解讨论. 通过偏微分方程的傅里叶变换解法和偏微分方程作分离变数成常微分方程后的傅里叶变换解法的深入讨论,均得到与有关教材一致的结果,并讨论了这两种方法之间的差别和联系.

关键词: 薛定谔方程')">薛定谔方程, 一维无限深势阱, 傅里叶变换

Abstract:

The solution of Schrödinger  equation for free particle and one-dimensional infinite potential well is

the basic content of quantum mechanics. In this paper, Fourier transform is used to solve these two

simple Schrödinger equations. Through the in-depth discussion of the Fourier transform method of partial differential equation and the Fourier transform method of ordinary differential equation which separates from the partial differential equation by separated variable method,the results are consistent with those of relevant textbooks,and the differences and relations between the two methods are discussed.

Key words: Schr?dinger  equation')">Schr?dinger  equation, one-dimensional infinite potential well, Fourier transform