大学物理 ›› 2022, Vol. 41 ›› Issue (07): 36-.doi: 10.16854/j.cnki.1000-0712.210519

• 教学讨论 • 上一篇    下一篇

矩形截面圆线圈电感系数的分析与计算

张德根,汪明珠   

  1. 皖西学院基础实验中心,安徽 六安237000
  • 收稿日期:2021-10-22 修回日期:2021-11-12 出版日期:2022-07-28 发布日期:2022-07-25

Analysis and calculation of inductance coefficient of circular coil with rectangular section

ZHANG De-gen, WANG Min-zhu   

  1. Basic Experiment Center, West Anhui University, Lu'an, Anhui 237000, China 
  • Received:2021-10-22 Revised:2021-11-12 Online:2022-07-28 Published:2022-07-25

摘要: 对于多层密绕矩形截面圆线圈的电感系数,将其化分为所有单匝圆线圈自感以及任意两个圆线圈互感,然后对所有自感与互感求和得到整个线圈绕组的电感系数.利用诺依曼公式和数值积分软件,计算出平均半径为10 cm的多层密绕矩形截面圆线圈的电感系数为4.65 mH,同时利用电感表测量相同尺寸的实际线圈电感系数为4.66 mH.理论计算值与实验测量值基本一致,两者的相对误差仅为0.22%,从而对设计电感线圈提供理论参考.

关键词: 自感系数, 互感系数, 同轴圆线圈, 诺依曼公式

Abstract: The inductance coefficient of a multilayer tightly wound rectangular circular coil is divided into self-inductance of all single-turn coils and mutual inductance of any two coils, and then the sum of all self-inductance and mutual inductance of the entire winding is obtained. Using Neumann formula and numerical integration software, the inductance coefficient of the multilayer close-wound rectangular section circular coil with an average radius of 10 cm is calculated to be 4.65 mH, while the inductance coefficient of the actual coil with the same size measured by inductance meter is 4.66 mH. The theoretical calculated value is basically consistent with the experimental measured value, and the relative error of the two is only 0.22%. It provides theoretical reference for designing inductance coil.

Key words: self-inductance, mutual-inductance, coaxial circular coil, neumann formula