大学物理 ›› 2023, Vol. 42 ›› Issue (7): 53-.doi: 10.16854/j.cnki.1000-0712.220290

• 大学生园地 • 上一篇    下一篇

带电粒子在地磁场中的运动及Mathematica数值模拟

董顺成,郭芳侠   

  1. 陕西师范大学 物理学与信息技术学院,陕西  西安710119
  • 收稿日期:2022-06-09 修回日期:2022-09-15 出版日期:2023-07-01 发布日期:2023-07-19
  • 通讯作者: 郭芳侠,E-mail: guofangxia@snnu.edu.cn
  • 作者简介:董顺成(2000—),男,河南驻马店人,陕西师范大学物理学与信息技术学院2018级本科生.

Motion of charged particles in earth’s magnetic  field and Mathematica numerical simulation

DONG Shun-cheng, GUO Fang-xia   

  1. School of Physics and Information Technology,Shaanxi Normal University, Xi’an, Shaanxi 710119, China
  • Received:2022-06-09 Revised:2022-09-15 Online:2023-07-01 Published:2023-07-19

摘要: 基于单粒子轨道模型和地磁场偶极子模型,考虑相对论效应,对近地球区域磁场中运动的带电粒子轨迹使用Mathematica软件中六阶龙格—库塔算法进行数值计算和模拟,并对极光现象的产生进行了解释,同时讨论了带电粒子在地磁场中运动的引导中心近似.结果表明:1) 从地球北极方向观察,被地球磁场捕获的质子沿顺时针方向漂移,电子沿逆时针方向漂移;2) 粒子各个分运动的运动周期数值模拟结果与文献中理论值非常吻合;3) 从(4Re,0,0)入射的粒子投掷角小于7.38°时,带电粒子将会与地球表面大气层碰撞而沉降,存在产生极光现象的可能.大于7.38°时,粒子将会被束缚在地磁场中,形成辐射带;4) 其他条件相同时,带电粒子投掷点距离地球越远,其漂移速度越大;投掷角越大,其漂移速度也越大;5) 对于能量较低的粒子,一阶近似下引导中心轨迹能很好地代表粒子实际运动轨迹.

关键词: 地磁场, 粒子运动, 数值模拟

Abstract: Based on the single particle orbit model and the geomagnetic field dipole model, and considering the relativistic effect, the sixth-order Runge-Kutta algorithm in the Mathematica software is used to numerically calculate and simulate the trajectories of charged particles moving in the magnetic field in the near-Earth region. The generation of auroras is explained, and the approximation of the guiding center of the charged particles moving in the geomagnetic field is discussed. The results show that: (ⅰ) Observed from the earth’s north pole, the protons captured by the earth’s magnetic field drift in the clockwise direction, and the electrons in the anticlockwise direction; (ⅱ) The numerical simulation results of the motion period of each particle motion are in good agreement with the theoretical values in the literature; (ⅲ) When the throwing angle of the incident particle from (4Re,0,0) is less than 7.38°, the charged particle will collide with the atmosphere on the earth’s surface and sink, and there is the possibility of producing auroras. When it is greater than 7.38°, the particles will be bound in the geomagnetic field, forming a radiation belt; (ⅳ) When other conditions are the same, the farther the charged particle throwing point is from the earth, the greater the drift velocity; the greater the throwing angle, the greater the Its drift speed is also greater; (ⅴ) For particles with low energy, the guided center trajectory can well represent the actual trajectory of particles in the first-order approximation.

Key words: earth’s magnetic field, the particle motion, numerical simulation