大学物理 ›› 2009, Vol. 28 ›› Issue (2): 18-18.

• 著者文摘 • 上一篇    下一篇

利用不变量本征算符求解二维耦合量子谐振子的能级间隔

王帅   

  1. 菏泽学院物理系,山东菏泽274015
  • 出版日期:2009-02-25 发布日期:2009-02-20

Derivation of the energy-level gap of two-dimensional coupled quantum harmonic oscillators by invariant eigen-operator method

  • Online:2009-02-25 Published:2009-02-20

摘要: 目前不变量本征算符方法已成功地解决了某些量子系统哈密顿量能级问题.对于二维耦合量子谐振子,利用这一方法可以非常简捷有效地给出其能级信息,而不需要使其哈密顿量对角化.计算结果表明,不同耦合形式的二维耦合量子谐振子的能级间隔是不同的.

关键词: 不变量本征算符, 二维耦合量子谐振子, 能量本征值

Abstract: The invariant eigen-operator method is successfully applied to solving energy levels for some quantum systems' Hamihonian. For two-dimensional coupled quantum harmonic oscillators, the Hamihonian energylevel gap can be obtained with convenience and directness by this method. Then the Hamiltonian needs not to be diagonalized. The results show that the energy-level gaps are different for different coupled forms of two-dimensional quantum harmonic oscillators.

Key words: invariant eigen- operator, two- dimensional coupled harmonic oscillators, energy eigen- value

中图分类号: 

  • O413.1