大学物理 ›› 2018, Vol. 37 ›› Issue (6): 13-15.doi: 10.16854 /j.cnki.1000-0712.170335

• 教学讨论 • 上一篇    下一篇

基于保角映射的拉普拉斯方程降维法在求解温度场中的应用

殷勇,王福谦   

  1. 西南交通大学希望学院基础部,四川成都610400
  • 收稿日期:2017-06-07 修回日期:2017-11-08 出版日期:2018-06-20 发布日期:2018-06-20
  • 作者简介:殷勇( 1969—) ,男,四川成都人,西南交通大学希望学院基础部副教授,博士,主要从事大学数学和大

Application of reduced dimension method of Laplace equation based on conformal mapping in solving temperature field

YIN Yong,WANG Fu-qian   

  1. Department of Basic Courses Teaching,Southwest Jiaotong University Hope College,Chengdu,Sichuan 610400,China
  • Received:2017-06-07 Revised:2017-11-08 Online:2018-06-20 Published:2018-06-20

摘要: 将保角映射用于温度场问题的求解,通过变换函数将求解区域变换为带形域或一端绝热的半无限带形域,从而把 二维温度函数降为一维函数,在此基础上方便地求解拉普拉斯方程的边值问题,给出其温度分布函数,并利用软件MATLAB 绘制出等温线图.

关键词: 保角映射, 拉普拉斯方程, 降维法, 温度场, 等温线

Abstract: The temperature field problem is solved by conformal mapping,the solution domain is transformed into a band domain or a semi-infinite band with an adiabatic boundary by the transformation function. Thus,the two-dimensional temperature function is reduced to a one-dimensional function,then the boundary value problem of the Laplace equation is solved expediently,and its temperature distribution function is given,and the isothermal map is drawn by software MATLAB.

Key words: conformal mapping, Laplace equation, reduced dimension method, temperature field, isothermal map