大学物理 ›› 2021, Vol. 40 ›› Issue (9): 81-.doi: 10.16854 / j.cnki.1000- 0712.210142

• 大学生园地 • 上一篇    下一篇

格林函数以及在常微分方程中的应用

钱光耀,闫若琨,汪泽西,郑神州   

  1. 北京交通大学理学院,北京 100044
  • 收稿日期:2021-03-25 修回日期:2021-04-12 出版日期:2021-09-20 发布日期:2021-09-24
  • 通讯作者: 郑神州,E-mail: shzhzheng@ bjtu. edu. cn
  • 作者简介:钱光耀(2000—),男,浙江临海人,北京交通大学理学院2018 级本科生.
  • 基金资助:
    大学生创新创业训练计划项目(200170063)资助

Green functions and their applications to ordinary differential equations

QIAN Guang-yao, YAN Ruo-kun, WANG Ze-xi, ZHENG Shen-zhou   

  1. College of Science, Beijing Jiaotong University, Beijing 100044,China
  • Received:2021-03-25 Revised:2021-04-12 Online:2021-09-20 Published:2021-09-24

摘要: 本文综述了各种常用的常微分方程初、边值问题解的格林函数表示以及格林函数的计算法.对于一阶线性常微分方程初值问题,给出格林函数计算公式以及解的格林函数表示;对于二阶线性常微分方程的边值问题和初值问

  题,给出格林函数计算格式,以及解的格林函数表示;对于满足一般初值条件的Sturm- Liouville

  问题给出解的格林函数卷积表示和格林函数计算法;对于二阶线性常微分方程的非混合和混合边值问题考虑了解的格林函数表示和格林函数计算法;最后,给出了高阶线性常微分方程边值问题解的表示和其格林函数算法.

关键词: 格林函数, 解的卷积表示, 线性叠加原理, 边值问题, 初值问题

Abstract: In this paper, we are devoted to a review of the Green functions and the Green

  function method for solving the initial and boundary value problems of various ordinary

  differential equations. For the initial value prob- lem of linear ordinary differential equation

  of first order, the formula of Green function and the solution represented

  by Green function are given. For the boundary value problem and initial value problem of linear

  ordinary differential equation of second order, the calculation of Green function and the

  solution represented by Green function are shown, respectively. The calculation of Green

  function and the solution representation by Green function for Sturm-

  Liouville problem satisfying general initial value conditions are established. For the

  un-mixed and mixed boundary value problems of linear ordinary differential equations of second

  order, we also consider how to find Green function and the solution represented by Green

  function, respectively. Finally, For the boundary value problem of higher or- der linear ordinary

  differential equations, the Green function and the solution expressed by Green function

  are ob-

  tained.

Key words: Green function, solution represented by convolution, linear superposition principle,   boundary val- ue problem, initial value problem