大学物理 ›› 2022, Vol. 41 ›› Issue (4): 65-.doi: 10.16854 /j.cnki.1000-0712.210199

• 大学生园地 • 上一篇    下一篇

一维非定常流体力学数值模拟

付智豪,余聪   

  1. 中山大学 物理与天文学院,广东 珠海519082
  • 收稿日期:2021-04-19 修回日期:2021-07-02 出版日期:2022-04-20 发布日期:2022-04-21
  • 通讯作者: 余聪,E-mail:yucong@mail.sysu.edu.cn
  • 作者简介:付智豪(2000—),男,广东广州人,中山大学物理与天文学院2019级本科生.
  • 基金资助:
    国家自然科学基金(11873103)资助

Numerical simulation of one-dimensional unsteady hydrodynamics

FU Zhi-hao,YU Cong   

  1. School of Physics and Astronomy,Sun Yat-Sen University,Zhuhai,Guangdong 519082,China
  • Received:2021-04-19 Revised:2021-07-02 Online:2022-04-20 Published:2022-04-21

摘要: 非线性的流体偏微分方程中的激波间断解是物理中很有挑战的问题,其中的Riemann问题可采用解析的方法求出理论解,但采用近似解的方法进行流体动力学数值模拟也可以有效地追踪和捕捉激波.本文以一维激波管为例,对非定常流体基本方程组采用Roe通量差分裂格式,并进行数值模拟.通过与理论解对比,发现其符合度较好.

关键词: 流体力学, 激波, Roe通量差分裂, 数值模拟

Abstract: The discontinuous shock wave solution in nonlinear partial differential equations of fluids is a very challenging problem in physics.The Riemann problem can be solved theoretically by analytical method,but the approximate solution method can also be used to track and capture the shock waves effectively in the numerical simulation of fluid dynamics.In this paper,a one-dimensional shock tube is taken as an example,adopting the Roe flux difference splitting scheme to the basic equations of fluid and numerically simulated.It is found that the method is in good agreement with theoretical solution.

Key words: hydrodynamics, Shock wave, Roe flux differential splitting, numerical simulation