大学物理 ›› 2023, Vol. 42 ›› Issue (10): 1-.doi: 10.16854/j.cnki.1000-0712.230014

• 教学研究 •    下一篇

浅谈变分原理及其一些应用

郑神州,于海燕   

  1. 1. 北京交通大学 数学与统计学院,北京100044; 2.内蒙古民族大学 数理学院,内蒙古 通辽028043
  • 收稿日期:2023-01-14 修回日期:2023-02-28 出版日期:2023-11-01 发布日期:2023-11-06
  • 作者简介:郑神州(1965—),男,浙江临海人,北京交通大学教授,博士,主要从事大学数学物理方法教学和偏微分方程研究工作.E-mail:shzhzheng@bjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(12071021);北京交通大学研究生课程建设项目(134001103522)资助

A brief discussion on variational principle and some applications

ZHENG Shen-zhou1, YU Hai-yan2   

  1. 1. School of Mathematics and Statistics, Beijing Jiaotong University, Beijing 100044, China; 
    2. School of Mathematics and Physics, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028043, China
  • Received:2023-01-14 Revised:2023-02-28 Online:2023-11-01 Published:2023-11-06

摘要: 给出了变分原理的基本形式以及变分极值的欧拉-拉格朗日方程的推导,其次以短程线、测地线、最速降线和等周问题为例,分别推导出各具体形式的欧拉-拉格朗日方程表示式,并对相应原问题给出求解过程以及各种相关的推广. 

关键词: 变分原理, 积分泛函, 欧拉-拉格朗日方程, 极值函数

Abstract:  The variational principle is introduced, and its Euler-Lagrange equation for the minimum of variational problems in the setting of one dimension is described. Then, the corresponding specific expression of these Euler-Lagrange equations for taking a geodesic line, geodesic curve, Brachistochrone and isoperimetric problems are deduced as examples, respectively. The solutions of the corresponding original problems are obtained and the relevant generalizations are given.

Key words: variational principle, calculus of variations, Euler-Lagrange equation, extremum function